
1

XSV Board 1.0 – VHDL Interfaces and Example Designs

SRAM Interface

School of Computer Science and Electrical Engineering
University of Queensland, Brisbane, Australia.
http://www.csee.uq.edu.au/

Last Modified: : 23 February 2001

Contents

1.0 About this design... 1
2.0 Files needed for this design... 1

List of Files... 1
File Descriptions .. 1
Adding constraints to a UCF.. 2

3.0 Module description.. 3
SRAM-side ports.. 3
Main user-side ports ... 3
Using the SRAM interface ... 4
Actual module timings ... 5

4.0 Known problems ... 6

1.0 About this design

The XSV board contains two banks of asynchronous SRAM, each 1 MB in size. This design presents an
interface to these SRAM banks. This interface provides a simpler method for reading and writing to memory
than connecting directly to the SRAM.

2.0 Files needed for this design

List of Files
• sram512kleft16bit50mhzreadreq-sv05.vhd
• sram512kleft16bit50mhzreadreq-sv05c.vhd
• Outdated files:

� sram512k32bit50mhz-sv05
� sram512kleft16bit50mhz-sv01b.vhd

File Descriptions
The SRAM Interface design is not a stand-alone design but rather a reusable VHDL entity (or module).

The VHDL source files listed above are mutually exclusive – only one is needed in a given user design.
Each file contains a single VHDL module called “sraminterface”. This module provides a user design
with a simple interface for reading from or writing to SRAM.

Note that the filenames themselves contain information about the content of the files. The “svXX” suffix
on the filenames stands for “source version XX”. Previous versions of these files are obsolete and have
not been released.

http://www.csee.uq.edu.au/

2

sram512kleft16bit50mhzreadreq-sv05.vhd & sram512kleft16bit50mhzreadreq-
sv05c.vhd
The “sraminterface” modules in both these files use the same user-side interface. The only difference is in
their internal timings. “sram512kleft16bit50mhzreadreq-sv05.vhd” takes 2 clock cycles to perform a read
while “sram512kleft16bit50mhzreadreq-sv05c.vhd” takes only 1 clock cycle to perform a read. (Both
files take 2 clock cycles to perform a write).

Determining which file to use:
In theory, 2 clock cycles should be necessary for a read to be performed (given the characteristics of the
SRAM on the XSV board). Therefore in most situations “sram512kleft16bit50mhzreadreq-sv05.vhd”
should be used. Despite the theory, the on-chip and on-board timings sometimes eventuate such that one
clock cycle is sufficient for reads to be successfully performed. If this is the case then
“sram512kleft16bit50mhzreadreq-sv05c.vhd” can be used instead.

Outdated files: sram512k32bit50mhz-sv05.vhd & sram512kleft16bit50mhz-
sv01b.vhd
The “sraminterface” modules in these files have a slightly different user-side interface from the other two
files above. The internal structure of the modules is also different. They are only listed here because they
are used by some of the other designs in this resource collection. (Note that though these two files are not
the most recent versions, they do still work). The outdated files are not described in this document
(although they are similar to the two files that are described). For new designs, it is recommended that
one of the other two files above (“sram512kleft16bit50mhzreadreq-sv05.vhd” or
“sram512kleft16bit50mhzreadreq-sv05c.vhd”) be used.

Adding constraints to a UCF
The VHDL modules do not come with their own UCF, but there are constraints that can be added to the
UCF of any design that includes these modules. Generally these constraints are not essential, but they can
improve overall module timing.

Some helpful constraints to add to a user design that includes an SRAM interface module are:

• Constraining the SRAM-side output registers of the module into IOBs. The following are
examples of such constraints:

INST "user_hierarchy/addrReg_reg<*>" IOB = TRUE;
INST "user_hierarchy/writeDataReg_reg<*>" IOB = TRUE;
INST "user_hierarchy/CEn_reg" IOB = TRUE;
INST "user_hierarchy/OEn_reg" IOB = TRUE;

• Removing the built-in delay in the input path for the SRAM data lines. The following is an
example of such a constraint:

NET "ldata<*>" IOBDELAY = NONE;
• Setting the SRAM-side output pins to use the fast slew setting. The following are examples of

such constraints:
NET "laddr<*>" FAST;
NET "ldata<*>" FAST;
NET "lcen" FAST;
NET "loen" FAST;
NET "lwen" FAST;

Note: The net and instance names used above are only examples. The actual net names will depend on the
port names of the top-level entity in the user design. The fragment of the instance names denoted

3

“user_hierarchy” above will depend on the name given to the SRAM interface module when it is
instantiated as a VHDL component in the user design.

3.0 Module description

This section describes the SRAM interface module in the two files sram512kleft16bit50mhzreadreq-sv05.vhd
& sram512kleft16bit50mhzreadreq-sv05c.vhd.

The only filename difference between these two files is that one ends in “sv05” (i.e. source version 5) while the
other ends in “sv05c” (i.e. source version 5c). Both files contain one VHDL module called “sraminterface”.
Both modules present the same interface to a user design. One description, which applies to both modules, is
given below. (This description does not apply to the “sraminterface” module in the outdated files listed in the
previous section).

SRAM-side ports
Port name: Direction: Description:
SRAMLeftAddr(18:0) Output Connects to the SRAM address lines.
SRAMLeftData(15:0) Bi-directional Connects to the SRAM data lines.
CELeftn Output Connects to the SRAM /CE pin.
OELeftn Output Connects to the SRAM /OE pin
WELeftn Output Connects to the SRAM /WE pin.

Note: A lower case “n” at the end of a signal name is (often) used to denote that the signal is low-
asserted.

The five ports above must be connected to one of the two banks of SRAM on the XSV board. The port
names themselves suggest that the left SRAM bank should be used. However this is simply a historic
feature of the port naming scheme. The reality is that the SRAM interface module can be connected to
either bank of XSV SRAM.

The “sraminterface” module gives complete access to one bank of SRAM. The address and data size
details are therefore as follows:

No. of addressable locations: 512 * 1024 = 524 288 = 512K
Width of data at each location: 16 bits (2 bytes)
Total capacity of one SRAM bank: 512K * 2 = 1024 KB = 1MB

Main user-side ports
Port name: Direction: Description:
writeAddr(18:0) Input Specifies the address to which the user design wishes to write.
writeData(15:0) Input Specifies the data that the user design wishes to write to SRAM.
readAddr(18:0) Input Specifies the address from which the user design wishes to read.
readData(15:0) Output Outputs the data that is read from SRAM.
canWrite Output High when the “sraminterface” can handle another write request.
canRead Output High when the “sraminterface” can handle another read request.
doWrite Input The user design sets this high to make a write request.
doRead Input The user design sets this high to make a read request.

The SRAM interface module provides the user design with separate address and data buses for writing
and reading.

4

Using the SRAM interface

How to write to an SRAM location
• Place the address to write to on the “writeAddr” bus.
• Place the data to be written on the “writeData” bus.
• Wait for the “canWrite” signal to be high. This indicates that the module can accept what is called a

“write request”.
• To make the write request, set “doWrite” to high. “doWrite” can be set to high in the same clock

cycle that “canWrite” is high.

On the next rising clock edge after “doWrite” goes high, the module will register the values on
“writeAddr” and “writeData”. After this time the value on “writeAddr” and “writeData” can be
changed. On subsequent clock cycles the write to SRAM will be performed. “canWrite” will be low
during this time.

• During the final clock cycle in which the write is being performed, “canWrite” will go high again.
This indicates that the previous write will be complete at the end of the current clock cycle (in which
“canWrite” goes high). It additionally indicates that another write request can be made.

How to read from an SRAM location
• Place the address to be read from on the “readAddr” bus.
• Wait for the “canRead” signal to be high. This indicates that the module can accept what is called a

“read request”.
• To make the read request, set “doRead” to high. “doRead” can be set to high in the same clock cycle

that “canRead” is high.

On the next rising clock edge after “doRead” goes high, the module will register the value on
“readAddr”. After this time the value on “readAddr” can be changed. On subsequent clock cycles the
read from SRAM will be performed. “canRead” will be low during this time.

• During the final clock cycle in which the read is being carried out, “canRead” will go high again. At
the end of the clock cycle in which “canRead” is high again, the user design must register the value
of the “readData” bus. The user design must register this value at this time, as it is not registered
internally by the module and may change on the next clock cycle.

“canRead” going high additionally indicates that another read request can be made.

Additional notes
• When making a write request, “writeAddr”, “writeData” and “doWrite” can be set up in any order,

provided that “writeAddr” and “writeData” have the correct values on the first rising clock edge that
occurs after “doWrite” goes high (with “canWrite” also high).

• When making a read request, “readAddr” and “doRead” can be set up in any order, provided that
“readAddr” has the correct value on the first rising clock edge that occurs after “doRead” goes high
(with “canRead” also high).

• As may already be evident, the signals “canWrite” and “canRead” always have the same value. This
could change in future versions, however, so it is probably wiser to use the correct signal for the
operation being performed.

5

Actual module timings
To allow the internal timings of the module to change if necessary, it is best to use the “canWrite” and
“canRead” signals to determine when writes and reads can be performed and when writes and reads have
concluded. However, for the two files listed in the start of this section, the current timings used are of
course fixed. The timing diagrams below show the various signals timings for a write operation followed
(several clock cycles later) by a read operation. These diagrams are not designed to highlight the
procedure for making a write or read request, by rather what happens when the module receives (and acts
on) either of these requests. (These diagrams were created using the Logic Simulator programme in
Xilinx Foundation).

sram512kleft16bit50mhzreadreq-sv05.vhd

Operation: No. of clock cycles used:
Write 2
Read 2

sram512kleft16bit50mhzreadreq-sv05c.vhd

6

Operation: No. of clock cycles used:
Write 2
Read 1

Note: The version of “sraminterface” in this file performs a read in only once clock cycle. This means that
the “canRead” signal (and “canWrite” signal) does not actually ever go low when performing a read.
However, provided that the user design follows the protocol given in the “Using the SRAM interface”
section above, the user design will still work correctly with the SRAM interface module.

4.0 Known problems

These SRAM interface modules have been tested as far as possible. In particular they work perfectly as part of
the PC to SRAM interface design.

There is a known problem that occurs when using the SRAM interfaces as part of the VGA Controller design.
When that design is implemented, small glitches are often seen in the VGA picture produced. This may be due
to a write or read to SRAM not being performed successfully. We have attempted to track down and remove
this problem, but have been unsuccessful. We cannot be certain that the source of the problem lies within the
SRAM interfaces, but it is mentioned here nonetheless.

	1.0 About this design
	2.0 Files needed for this design
	List of Files
	File Descriptions
	sram512kleft16bit50mhzreadreq-sv05.vhd & sram512kleft16bit50mhzreadreq-sv05c.vhd
	Outdated files:	sram512k32bit50mhz-sv05.vhd & sram512kleft16bit50mhz-sv01b.vhd

	Adding constraints to a UCF

	3.0 Module description
	SRAM-side ports
	Main user-side ports
	Using the SRAM interface
	How to write to an SRAM location
	How to read from an SRAM location
	Additional notes

	Actual module timings
	sram512kleft16bit50mhzreadreq-sv05.vhd
	sram512kleft16bit50mhzreadreq-sv05c.vhd

	4.0 Known problems

