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Slide 1: 
Hello.  I would like to welcome everyone from around the world.  
Thank you for joining us today for this webcast on "High 
Performance Source-Synchronous Interfaces Made Easy," brought to 
you by Xilinx and TechOnLine webcasts.  Your presenters today 
are: Peter [Alfie], Director of Applications Engineering for 
Xilinx; and Sean [Koontz], Applications Engineering Manager for 
Xilinx.  This webcast ultimately allows you to sit back and have 
the navigation ***.  As the user participating in the webcasts, 
you will able to ask questions at any time during the 
presentation, by clicking on the "Ask a Question" button, typing 
a question in the top of the window, and clicking, "Submit."  
The presenters will be answering questions at the end of the 
webcast, but please ask answer them at any time.  Also included 
with this webcast is a survey.  Please take the time to open, 
fill out and submit the presentation survey.  You can access the 
survey at any time in the "Print Documents" in the "Viewings" 
pull down menu on the left-hand side of your interface.  This 
survey will also path open when you choose to close your viewer 
window, or when the viewer window closes automatically at the 
end of the webcast.  By submitting this survey, you will be 
provided Xilinx and TechOnLine with valuable feedback on the 
subjects covered in the webcast, and also how we can improve the 
webcast product.  And now it gives me great pleasure to 
introduce you to Peter Alfie.      
 
PETER ALFIE: 
Slide 2: 
Hi.  Good afternoon, ladies and gentlemen.  Good evening in 
Europe and good early morning in Asia.  This is the first of our 
webcasts.  We covered performance, signal integrity, hour 
construction, and then the interface, as before.  Today we will 
address source synchronous I/O. 
 
Slides 3+4: 
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First, I will give some background.  Then Sean Koontz will give 
an overview of the timing problems and their solutions ***.  And 
he will follow this with detailed applications examples.  This 
is again an engineering presentation with few, if any, retro *** 
research and stratics *** during that era.  We really do not 
like their mudslinging marketing presentations.  And we know 
that green *** engineers don't believe that kind of nonsense 
either.  There are plenty of interesting verdicts or features to 
talk about in a positive way.  Why source synchronous I/O?  
What's wrong with go *** system synchronous I/O?  One central 
clock observes the whole board.  Well, we are caught in a 
conflict between two giants.   
 
Slide 5: 
Gordon Moore [Ritache] postulated Moore's Law: the doubling of 
*** account every other year.  As a side effect, system speed is 
doubling every five years, and it has done that vehemently.  40 
years ago, we were struggling with one megahertz clocking.  It's 
first hard to be the ***, ***.  40 years and eight doublings 
later, we are now at 250 megahertz bus copying, heading towards 
500 megahertz, and one gigahertz every two years.  It's really 
great, ever-increasing performance.  But then there is Albert 
Einstein, who incidentally exactly how many years ago, 
postulated that the propagation of speed  of electric signals 
can never be increased beyond the speed of light.  In fact, the 
velocity on a PC board is only running half the speed of light, 
and therefore it is constant.  That was no problem at one 
megahertz.  We assume and allocate 25% of the clock area for the 
Interconnect Delay, and the rest for the BIOS delay, set-up 
times and margins.  We, in those day, had 30 meters, 100 feet, 
available for the wiring.  We put around wires all over the 
office or the home.  Circuits were slow but interconnect was no 
problem at all.  35 years later -- that's five years ago -- at, 
let's say, 100 megahertz, we still put it for 30 centimeters, or 
12 inches, of *** from the PC board.  But today, at *** speed, 
we are down to six inches, and we are heading towards three 
inches.  Obviously, we can not constantly build complex systems 
within a three-inch cube.   
 
Slide 6: 
Here is a different view of the same problem using circuit time: 
Years ago, good old system synchronous designed things that 
looped up terminator to drive 50 megahertz through devices, and 
each had about 10 nanosecond delay.  No problem at all, even 
with two nanoseconds of *** delay.  At 100 megahertz, and with 
five-nanosecond device delays, the timing got a bit tight.  It 
was even starting using clicks, fly, centralized clocks, global 
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clocks and so on.  And at 200 megahertz, this scheme doesn't 
work at all.  Five nanoseconds not, period.  Two nanosecond 
clock is solution.  Two nanoseconds actually delay, one 
nanosecond interconnect delay brings absolutely nothing as in 
timing modules.  That nice old idea of one common clock driving 
multiple clicks simultaneously has become a form literally of 
the past, purely extravagant.  The only way out of this dilemma 
is source synchronous clocking, which means: We set the clock to 
*** data.  This makes any interconnect delay irrelevant.  The 
data on the bus arrives whenever it arrives, but it brings 
internal clock.  This has some drawbacks: there are more clocks 
and more clock pins, and there even be multiple clocks, clock 
phases and checks.  But we have more better made packages with 
many connections, and we have chip-internal *** to take care of 
that.  There is also a detailed filing agent.  The clock is 
cloven together with data.  And the clock edge, therefore, 
arrives exactly at the time when it interchanges.  And that is 
precisely the wrong moment the clock to behave.  The good 
portion of the day, Sean and I will describe methods.  We may 
handle the clock or the data, so that the clock hits the center 
of the data ***.  That's referred to as clock ***.   
 
Slide 7: 
Here is ability of source synchronous interfaces.  10 years ago, 
the 66-megahertz clocks had achieved a data *** of a few 
gigahertz a second.  Today, the RapidIO, HyperTransport in SFI-
4, to give us well over 10 gigabytes for second data ***.   
 
Slide 8: 
So, synchronous interfaces have become the norm.  They are used 
for point-to-point traffic, no *** rates or buses.  They 
increase the chip-to-chip speed with 500-700 megahertz clocks.  
And they give better timing monitoring, and that means higher 
reliability.  Some examples are listed here from the world of 
networking and data com, and also memory interfaces.   
 
Slide 9: 
Finally, I might also mention that the understood reliable 
center of the data is shrinking fast, even faster than the bit 
***.  Since the transitionings use up a disproportionate part of 
the bit period -- another reason we use the available timing 
budget very carefully.  So, let me conclude:  Source synchronous 
blocking is not just the better way.  It's the only way in 
today's and tomorrow's ***.  *** Sean Koontz to tell you all the 
details. 
 
SEAN [KOONTZ]: 
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Slide 11: 
Thanks for the wonderful free amphitheatre.  I am going to take 
over now with what we, Xilinx and our customers have identified 
as some of the major challenges in designing with today's chips, 
source synchronous ***. 
 
Slide 12: 
I'll start with the first plot diagram of Vertex-4 I/O and some 
of the innovations that have been added to this architecture, in 
particular to deal with: with clock forwarding schemes as ***, 
finally called ChipSync.  Every I/O includes these major 
features: ISERDES, OSERDES; those are our primitive names for 
the serializer and deserializer included in the I/O.  The 
ISERDES block includes elements to divide the incoming clock 
frequency and distribute multiple versions -- or synchronous 
versions of clock.  Also included are mechanisms for bit and *** 
alignment I'll talk about shortly.  They also include our clock 
distribution networks in this block that he called ChipSync, 
it's the complete packaging -- the solution that we tile 
throughout the architecture in order to not only implement a 
single high speed source synchronous bus, but in order to have 
many source synchronous buses.   
 
Slide 13: 
The challenge number one: Data Capture at high speeds.  This is 
fundamentally the most difficult in sequencing aspect of 
implementing high speed bus -- not only capturing data, but 
doing so and understanding which margins you have left in your 
system so that you can proportion a certain amount of error or 
slack to your PDP design or to your ASIC *** or whatever device 
you're trying to hook up to an FPGA.  And obviously when you get 
up to a gigabyte per second data, you're electing a very, very 
small target to hit, which is what we're showing here.  
Objective simply to put that clock right into the middle of that 
available data window.  So how do we deal with that? 
 
Slide 14: 
We manipulate the data or clock or both in order to center that 
clock edge in the available data valid window target.  Every 
Virtex-4 I/O includes what we call IDELAY, under the name or a 
variable, have fine resolution, a derailment, which is fully 
user accessible.  See this 64 tap delay chain with 75 per 
seconds resolution.  And it is calibrated by a module called 
IDELAY control block.  The provision or the user requirement is 
that a 200 megahertz clock is provided to that, either *** 
controlled block.  We specify what the quality of that clock it 
could be in order to guarantee the 75 pica-second in our data 
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sheet.  This allows us to delay data and audit in fine 
resolution increments while holding the clock still.  This 
achieves obviously a fine sampling of a single data var, but 
also allows us to manipulate each data channel independently.  
So, I'm alluding to some information I'm going to get to later.  
But that's a key distinction.  Objective number one is sampling 
data with the most precision.  Objective number two is sampling 
the entire bus with the most precision.        
 
Slide 15: 
Challenge Number Two: Managing Clock Speeds Up to 700 Megahertz.  
This is not only a challenge to the FPGA or an ASIC designer, 
but it's a challenge to the PCB designer as well.  We identified 
this early on with Vertex-2 and implementing high speed for a 
particular spot to *** it.  You know, what are customers needed 
to do?  In other words, what kind of clock qualities are being 
provided to our chips?  What kind of reliability do we need to 
understand or limit that either source synchronous clock or 
clock source?  What this all boils down to is: How do you 
distribute ISD *** clock inside its out-rig and maintain the 
highest precision duty cycle, and minimize the skew as you 
distribute the clock?  With Vertex-4, we implemented all of our 
global talk networks fully differentially, with differential 
drivers and interconnects.  This allows for higher speed and 
less duty cycle distortion.  In addition to the global clock 
networks, we also added four fully differential IO clocks per 
bank; and I'll elaborate on those and what IO clocks are in a 
little bit.  Now, the ability to forward clocks is also an 
interesting application of our architecture in that distributing 
high speed clocks on a board on a system is also challenging, 
getting require additional components.  The FPGA can serve as a 
precision-aligned clock distributor as well, using the IO clock 
or the global clock ***.   
 
Slide 16: 
So, challenge number three: PCB Layout is becoming more and more 
of a challenge as these data rates increase.  Obviously, with a 
compact board, layout constraints can result in trace length 
differences.  Or, it can even *** cycle precision scheme 
matching in a highly compact board to become almost impossible.  
Propagation delays for connectors may also not be available; so 
you may not know, or you may have to tolerate a certain amount 
of skew that the connector vendor specifies.  So these are 
unknowns that are attributed to the PCB layout itself.   
 
Slide 17: 
So, I mentioned the ability to bit to you skew individual 
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channels using IDELAY, right in the IOB free scaling.  So, that 
allows you to align or to optimize the viewing quantity of each 
data.  But if you have to skew in a bus, your words may be 
misaligned as well.   
 
Slides 18 + 19: 
We have a second block that we call Bitslip in every IOB, which 
re-orders the data stream coming into the ISERDES, and allows 
you to shift, basically, barrel shift that thing coming through, 
and find every possible combination of it -- this assumes a 
training pattern -- of the data stream coming into the IOB.  
This is also available in every I/O.   
So, main objective is to word align.  So we use IDELAY to 
optimize this re-uplink point for each IOD, and then we use 
Bitslip to make sure that the words are aligned as they go into 
the fabric.   
 
Slide 20: 
Challenge Number Four is implementing multiple interfaces.  
Multiple interfaces are going to require multiple unique clock 
domains.  This makes clock management particularly pivotal and 
resource intensive; it requires synthesis, *** distribution 
issues.  IO Placement for multiple interfaces is also a problem.  
You need to break out of the ball grid array, and you need a 
floor plan here for your PCB.   
 
Slide 21: 
So, I mentioned that the four IO clocks per bank.  What is shown 
here: each four is on a blue line is a clock region.  A bank 
consists of two clock regions.  So, what's showing here is one 
and a half banks.  The IO clocks are also paired up with what we 
call BUFARS or regional clocks.  The regional clock divides down 
the incoming clock and then distributes it to the fabric and the 
IOs as well.  This is how we handle the serial side or the 
parallel side of the ASERDES.  There are 8 24-clock regions per 
device up to four clock-capable *** bank, as I mentioned before.  
The regional clock buffer drives fabric.  It can be accessed by 
fabric.  It can accessed by the IO clock as well.   
 
Slide 22: 
I've sort of boiled down the amount of clock resources that we 
have put into Vertex-4: 32 fully differential global clock 
inputs, as well as single-ended clock inputs.  That means that 
we are not burning up half of our single-ended clocks in order 
to implement differential clocks.  You get 32 single-ended or 
differential.  As I mentioned before, 8-24 clock regions for 
device, 20 DCMs, 8 PNGDs -- for those of you who don't what the 
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PNGDs are, either phase *** that we got for Vertex-4, which is a 
new feature.             
 
Slide 23: 
We have also changed, or moved away from our IO ring 
methodology.  So, with Vertex-4, we have introduced the *** 
architecture.  This has an understanding for package design in 
that it provides a more symmetrical escape pattern, for all of 
our IOs.  You can see by the way our banks are laid out in the 
architecture.  This helps us now unskew both in terms of clock 
distribution network and in terms of package design.  But how 
does this translate to assisting the PSB design?  It provided 
even more flexibility in that you can implement more low skew 
source synchronous buses in more different locations, and it 
cross-ranks. 
 
Slide 24: 
This is just to summarize some of the resources in a different 
way. *** 240-960 *** IOs or SelectIO pins and up to 68 clock-
capable I/Os, that’s up to 68 different I/O ***, or 68 different 
unique source synchronous buses in all respects.  
 
Slider 25: 
Now our better offer is 45 degree steps or ***, and we're 
offering 75 picoseconds of resolution.  As you increase in 
frequency, you can see where the tradeoff becomes quite 
significant.  It's sort of how much actual valid data you really 
have?  You have all kinds of results if I count your supply.    
 
Slide 27A: 
Let me move into discussing a couple of our applications that 
are key showcases for the source synchronous architecture, SFI-4 
and SPI-4.2.  This is a classic illustration of how our chips 
were being used in systems and where the value adequately comes 
into play.  We have seen that multiple source synchronous buses 
and to have VGA is almost a requirement.  It is very seldom that 
you see somebody *** use just a single *** point.   
 
Slide 27B: 
Chip function.  What is shown here is a SFI-4 to SPI-4.2 bridge 
between a general processor and a OC-192 Framer.  We also might 
have a SPI-4.2 to Serial for high upgrades in the backend of 
this part.   
 
Slide 27C: 
A classic example: four-way switches are also critical.  So what 
is this really getting at?  It's getting at the need to be able 
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to implement not only multiple buses, but to be able to move 
them freely around and have a lot of free flexibility in order 
to get these carts built. 
 
Slide 28: 
So, we've simplified the SFI-4 design with a lot of architecture 
changes of Virtex-4.  We're leveraging ChipSync fully, moved 
these higher serialization/deserialization circuitry into the 
IOB, as well as the clock distribution.  And the FIFO16 is a 
block for clock domain change, data handoff between the source 
synchronous bus to the core.   
 
Slide 29 
So here's a block diagram for the SFI-4 block.  A trip to left 
side is the user interface: a 64 bit data interface, and the 
global clock.  We hand that data to a FIFO.  We time that; 
there's a transmit clock on a -- And then serialize it four-to-
one, and then transmit the 16 bit bus with a forwarded clock 
using the output DVR registered to forward it, and you just 
change the line to data.  And the receiver is the mirror of that 
process.   
 
Slide 30: 
Blocks used for the receiver: The recovered clock in its network 
are implemented on a BUFIO and a BUFR.  The BUFIO is the High 
Speed Clock distribution network that I talked about earlier, 
the serial-side of the receiver.  And BUFR is a divide-by-four 
version of the input clock, and that clock unit parallel-side of 
the deserializer and the fabric.  Recovered data is recovered in 
the ISERDES.  We have a block called ISERDES_ALIGNMENT_PROCESS, 
which I'll talk about shortly.  This is a clock to data training 
algorithm state machine.  And then lastly, a FIFO16 that's using 
the interface *** core ***.   
 
Slide 31: 
So, another block diagram showing the SFI-4 Receiver.  Pretty 
much everything showing here is implemented in the IO.  The 
ISERDES connected to Data 0-15.  A Clock Capable I/O is used for 
the Reship Recover Clock.  These are dedicated I/Os.  These are 
dedicated locations in each bank.  The dedication is really the 
connectivity to the BUFIO.  The BUFIO is located at the end of 
every eighth clock row which is a clock region.  And it sends 
out from there to the BUFR clock network and to the I/O clock 
network.   
 
Slide 32: 
So, as I mentioned before, we are doing a four-to-one and one-
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to-four serialization/deserialization process.  The *** design 
of Virtex-4 has been fair for us up to 700 Megahertz single-data 
rate, transmit at this point and receive.  We do an automated 
version of clock data alignment, which we'll talk about in a 
minute.  This is what we call bus alignment, and it does not 
require a training pattern.  This design can also be used for 
XSBI and other high-speed single-data-rate LVDS applications.   
 
Slide 33: 
So, the ISERDES_ALIGNMENT_PROCESS.  This is the bus alignment 
that I just mentioned.  The objective is to align clock and data 
using IDELAY on each data lane.  And this is data-agnostic, non-
destructive training technique.  The assumptions here are that 
clock and data are edge-aligned at the pins of the FPGA, and 
that the clock will be toggling at startup for several 
milliseconds before data is sent; in other words, that there 
will be some period of time that the clock will be switching at 
the input of the FPGA.  The reason for this is that we are going 
to train to that clock.  The clock is at now in 1,0 pattern.  
When we find the center of the sampling window for the ISERDES 
in the clock IOB and we move data to an optimal possible 
location based on that clock siting pattern.  This fully has 
been implemented and fully characterized.   
 
Slide 34: 
So here's a circuit diagram of the clock training circuit.  Now 
this can run all the time.  As I mentioned, it's non-
destructive.  The clock is routed through the ISERDES in two 
different ways: one, it's passed through combinatorially and 
then *** the BUFIO and the BUFR.  From there, those clocks are 
fanned to the data lanes.  That is actually is what is 
physically recovering data.  We also route the clock to the IOA 
circuit into the flip-flop in the ISERDES.  This is a parallel 
path.  From there we take a look at the output queue of this 
flip-flop in our state machine, and manipulate the delay in 
order to interrogate the clock eye.   
 
Slide 35: 
So, the best simplification of the algorithm that I could do 
here: We begin incrementing the delay on clock until we see a 1 
to 0 change at Q output.  Then we start counting the number of 
taps as we continue to implementing on clock and so we say a 1/0 
change in the Q output.  Then we start counting the number of 
taps as we continue to increment, looking for the next 
transition, the next change in state.  Once we see that next 
change of state, the tap count equals the data valid window 
width of the clock at that register.  And if you subtract that 
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final tap-delay value by half the number of taps determined to 
equal the data valid window width, you will find the absolute 
delay required to put the clock in the center of the data eye.  
Once you have that number, you increment all data channels by 
that amount and the data to clock alignment is complete.  As I 
mentioned, it can constantly be running.  So, if you have a 
voltage and temperature shift, you will catch that if it's 
greater than 75 pica-seconds, you will catch that by monitoring 
the clock count.  And you can go ahead and move data once you 
have seen that.  If the shift is such that -- If it is sudden 
enough that there is now way you can recover, you may lose data.  
But that is an extreme case, and there is probably going to be 
more problems in the system than the launch of the data on this 
bus.   
 
Slide 36: 
The transmitter in Virtex-4 is very straightforward.  We use 
BUFIO and BUFR for the clock distribution, very similar to the 
receiver.  We use the OSERDES block to serialize the data and 
the FIFO16 to move data from core to interface.   
 
Slide 37: 
Not surprisingly, the block diagram looks very, very similar to 
the receiver; everything is very symmetrical and very packed.  
It's all packed into the IOD.  The first thing I would like to 
point out, and this is true for the receiver block diagram: 
What's shown here is three clock regions.  It does not take 
three clock regions to implement this interface.  This is how 
spread it could be.  This is spread across one and a half tanks 
***.  But you can connect this entire bus in a single clock 
region.   
 
Slide 38: 
Now we are going to move on to this SPI-4.2 up to core.  Before 
I do, everything I just mentioned about SFI-4, this is available 
as a reference design, in "Application Help."  I'll have a URL 
at the end of the presentation.  The SPI 4.2 information I'm 
about to share is based on our ID-coristine *** development 
work, and this is available at the core.   
 
Slide 39: 
So, Xilinx SPI-4.2 in Vertex 4 is fully compliant with OIF-SPI4-
02.1.  Ideal solution for packet over sign of ATM, and Ethernet 
applications.  Supports OC-192 line speeds 10 gig and beyond.  
Supports both static and dynamic alignment modes that are laid 
out in that delay specification.  It is a point-to-point 
interface and fully symmetrical.  16-bit data bus is LVDS.  
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Indeed we are IO.  And it is supported in all projects or 
device.   
 
Slide 40: 
Now, DPA or Dynamic Phase Alignments is a version of bit skew 
which I alluded to previously.  So, the objective is obviously 
to center sample data.  But also, it's toward align.  So, the 
SPI-4.24 uses both uses both IDELAY and Bitslip in order to 
compensate for channel skew.  And it is capable and 
characterized to compensate for up to plus or minus one bit 
period skew.   
 
Slide 41: 
Advantages of DPA.  Independent sample point determination for 
each bit is a key advantage.  That means that we are identifying 
the most optimal sample point within our data valid window.  And 
this leaves the most amount of system timing margin on the table 
for the rest of ***.  This supports, is required for data rates 
over 700 megabytes, 800 megabytes.  I don't know exactly where 
the SPI-4.2 cutoff point is.  And we have the reduced the size 
of this core by 50% with respect to Virtex-2 and the Virtex-2 
Pro implementation.   
 
Slide 42: 
So, on the black diagram, you can see the user interface, which 
is a 64-bit interface.  The SPI-4.2 implementation is also four-
to-one to elevation, 24 deserialization.  They use a data source 
from Tree FIFO for the core to user logic company and status 
memory where all of the flags on the interface.  *** resources 
used.  It's not.   
 
Slide 43: 
So, the SPI-4.2 metered components in DPA, very similar to what 
I was mentioning with SFI-4.  Using I-34 receiving, an IDELAY 
chain, Bitslip module, and the chip ***.  Data recovery using 
the IDELAY state machine which is similar to the platform *** 
methodology.  However, it is making use of the SPI-4.2 training 
pattern to interrogate actually each data bit independently.  
So, each data eye is interrogated and optimally set for the SPI 
production training pattern at start-up.  And then lastly, bus 
de-skew algorithm uses Bitslip to reorder the output of each eye 
series such that each channel is word aligned going into the 
fabric. 
 
Slide 44: 
So, quick summary encore.  A gigabit per second for pin data 
rates are available.  We have reduce FPGA resources by 35%.  I 
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mentioned 50% before; I think that is with respect to the entire 
core and IO resources, not just the fabric.  In/outs are 
flexible for this core.  We've reduced power in the Vertex-4 
architecture.  *** greater than four cores in a single device.  
And our data capture mechanism is even more accurate ***.   
 
Slide 45: 
This is the ML450 development board that my team designed.  This 
is used for verification of those designs that I just mentioned, 
the SFI-4 implementation, and the SPI-4.2 implementation.  Both 
the core and the application can be implemented on this board 
and checked out.  We use Fantag *** and differential precision 
interconnect cable for loop-back, so we can talk for ourselves 
basically.  You don't have to go board-to-board.  We have our 
customers use this board and others like it to talk to their own 
systems by building paddlecard *** adapters, *** cable 
connectors to their own card.  This is available today.  It can 
be ordered.  I'll show the URL at the end of the presentation.  
Or you can contact direct local FAE and get a demo or possibly 
borrow the board.   
 
Slide 47: 
And to sum up here, the key challenges that we've identified and 
solved with this architecture: Data capture at high speeds.  
Clock-to-data centering at "run time."  There are multiple ways 
to do this.  We have numerous application notes that go into 
detail on each different method, and they'll answer a lot of 
questions I'm sure I've left open; Managing clock speeds up to 
700 megahertz.  We have quadrupled our clock resources and made 
them fully differential; PCB layout challenge.  IDELAY and 
Bitslip to eliminate *** skew is critical.  Our in-package 
design and chip floor plan also helps in providing more 
flexibility in terms of what items you need to choose, from the 
FPGA designer, and from the PCB designer's perspectives.  That 
also address the last challenges, implementing multiple 
interfaces. 
 
Slide 48: 
So, here's the URL I mentioned.  Leverage the complete hardware 
verified solutions to assure first time design success.  You can 
access this link to find information and contact on the core, 
SPI-4.2 or RapidIO.  Also, the application notes for SFI-4, or a 
single-data rate 16-bit LVDS is more accurate; also information 
on the ML450 source synchronous interfaces toolkit.  You have 
the reference designs, schematics, Gerber files, everything you 
need to get going.  OK, at this time, I'd like to open it up for 
questions.  It looks like we have a few here.   
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Question and Answer Session 
Q: So, our first question, "What is the maximum IO speed of 

Vertex for general purpose IO?"  
A:  LDS IO maximum speed is 98 per second EDR.  And single-

ended IO including different *** to scale is I believe 300 
-- 500 megahertz per second.  No, I'm sorry, that's 300 
megahertz per second.   

Q: Are the data clocks *** to prevent reflection? 
A: I'm assuming, you mean, the recovered clocks, are they 

terminated on the EGA?  Yes, for LVDS inputs, all LVF 
inputs, we have on-ship *** determination natchpees *** 
that you set ***.   

Q: Is data centering using *** block performed continuously? 
A: Yes, this can be done continuously.  You have full access 

to increment and accruement *** that perhaps as a lay 
element.  And reset, so that is all done in the fabric.  
True, what really is meant by continuously?  There is one 
implementation that we call window monitoring.  We use the 
fairwell *** side of the input tree.  I'll draw you a 
picture.  Every IOD has a master and slave side.  For any 
LVDS input, you will use the master side IO logic and not 
the slave side IO logic; that's redundant.  So, what we do 
is route all data channels to the slave side and clock that 
into the fabric, so we're creating a mirror of all the data 
streams coming in.  By doing that, we can manipulate the 
mirrored version of the data all we want without destroying 
the incoming data.  So we can continually interrogate the 
data eyes, looking for differences between the mirror and 
the real data.  And if we see that the real data has 
slipped with respect to the mirror, we can move the real 
data without destroying it.  That's the most optimal way of 
insuring the best sampling over voltage and temperature and 
time.     

Q: Is this source synchronous implementation process automated 
via synthesis, or does the user manually instantiate 
elements such as Bitslip? 

A: Bitslip will appear in the pin in the primitive view.  So, 
the user will manually instantiate an ISERDES primitive, 
and they'll have access to pins on their primitives, like 
the Bitslip enable pin and the IDELAY increment/accruement 
pins.  So, and those are all part of one big primitive.  
The process is not entirely automated.  And most of it is 
implemented in hardware, so you're going to have to 
substantiate primitives.  It's only a handful of primitives 
that we're talking about.  We're talking a BUFIO, a BUFR 
and ISERDES to build a receiver, basically.  The catch is, 



Virtex-4 Source-Synchronous Interface Advantage Webcast Transcript 

14 14

in order to implement word aligning algorithms and data 
centering algorithms, you need to use the fabric; there 
needs to be some intelligence from a state machine.  So, 
the answer to that question is: Well, yes and no. 

Q: Does Vertex core have support for SFI-5?   
A: Not at this time. 
Q: Did you have to resolve word alignment with the DDR-2 

interface?  If yes, what did you use? 
A: Yes.  You do have to resolve word alignment issues with any 

interface that has *** skew.  So, if you're doing per bit 
deskews, or deskewing each lane, you have to address the 
word alignment issue ***, even if you know the word 
alignment interfaces are perfectly aligned.  You need to 
know in the fabric that your words are in the right place.  
So, we use this procedure to do that, which is fully 
documented.  You can take a look at the source code on our 
website, for -- I can't remember the application note 
number, but look for the DDR Vertex for I/O application 
note.   

Q: What is a typical jitter using DCMs in Vertex-4?  Do you 
recommend using Oxitclot *** generation for ***? 

A: This entirely depends on how fast your interfacing needs to 
go.  Typical jitter: The jitter is specified for RDCMs.  I 
can't remember off the top of my head what that stack is, 
but you should be able to get that off the website.  This 
is entirely up to you.  I can't answer that because I don't 
know what you're talking to and how much *** you need in 
the system.  We did implement a bus using DCMs and NLCore-
50 ***, and we're able to transmit over about 18 inches of 
cable and two connectors *** receiver, and we're able to 
recover data with *** all the way up to -- I gave you the 
per second *** DCM per transmitter.  So, that's a tough 
one. 

Q: Is I-the-Way *** available in Vertex-2 Pro also? 
A: No it is not available in Vertex-2 Pro.  I-the_way is new 

to Vertex-4. 
Q: How do you determine the sampling point when a training 

pattern is not available? 
A: That's a great question.  So, with SFI-4, what we showed 

was a method for training to the clock.  The sample of the 
clock because we know what the pattern is.  You know, it's 
one *** pattern, so we're able to find the edges of the 
clock, and thus we're able to determine what the center of 
the data eye is for the clock.  The assumptions for 
training to the clock are that the bus has minimal skew and 
***.  You get a very similar thing for *** in the ***, and 
unfortunately I'm not an expert in *** but you can get the 
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application off the web as well. 
Q: What do you use for a training pattern in the DDR-2 

interface? 
A: VDR-2 -- If you're talking about VDR-2 memories, don't -- I 

don't believe that there is a training pattern for the VDR-
2 memory.  For the SPI-4.2 interface, we use a *** of the 
ten ones pattern, which is specified in the ***.   

 
OK.  If there's no more questions, I'll hand it back to the 

operator. 
 
Operator: 
Thank you very much, Sean and Peter, for your presentation.  And 
I would like to thank everyone for attending today's 
presentation of "High Performance Source Synchronous Interfaces 
made Easy," brought to you today by Xilinx and TechOnLine 
webcasts.  I would like to remind you to please fill out and 
submit the survey.  This survey will open when you choose to 
close your viewer window, or when the viewer window closes 
automatically at the end of the webcast.  By submitting this 
survey, you will be providing Xilinx and TechOnLine with 
valuable feedback on the subjects covering the webcasts, and 
also we can improve the webcasts further.  This presentation 
will be available to all *** users in on demand format.  You 
will receive an e-mail with information how you can access the 
on demand version of this webcast.  Thank you again for 
attending.  We hope you can join us for future on-line webcasts.  
For a current schedule and on demand events, please go to 
www.techonline.com.   

End of XilinxMar2905_ PeterAlfie_SeanKoontz Webcast 


