
L09 - Pipelining 16.004 – Fall 2002 10/03/0

Pipelining
what Seymour Cray taught the laundry industry

Quiz 2 (next week) will cover materials through Tuesday’s
lecture. Lab 3 is due tonight.

L09 - Pipelining 26.004 – Fall 2002 10/03/0

Forget 6.004… lets solve a “Real Problem”

Device: Washer

Function: Fill, Agitate, Spin

WasherPD = 30 mins

Device: Dryer

Function: Heat, Spin

DryerPD = 60 mins

INPUT:

dirty laundry

OUTPUT:

6 more weeks

L09 - Pipelining 36.004 – Fall 2002 10/03/0

One load at a time
Everyone knows that the real

reason that MIT students put off

doing laundry so long is not

because they procrastinate, are

lazy, or even have better things to

do.

The fact is, doing one load at a time

is not smart.

Step 1:

Step 2:

Total = WasherPD + DryerPD

= _________ mins90

L09 - Pipelining 46.004 – Fall 2002 10/03/0

Doing N loads of laundry

Here’s how they do laundry at

Harvard, the “combinational” way.

Step 1:

Step 2:

Step 3:

Step 4:

Total = N*(WasherPD + DryerPD)

= ____________ minsN*90

…

(Of course, this is just an urban legend.
No one at Harvard actually does
laundry. The butlers all arrive on
Wednesday morning, pick up the dirty
laundry and return it all pressed and
starched in time for afternoon tea)

L09 - Pipelining 56.004 – Fall 2002 10/03/0

Doing N Loads… the MIT way
MIT students “pipeline”

the laundry process.

That’s why we wait!

Step 1:

Step 2:

Step 3:

Total = N * Max(WasherPD, DryerPD)

= ____________ minsN*60

…
Actually, it’s more like N*60 + 30

if we account for the startup

transient correctly. When doing

pipeline analysis, we’re mostly

interested in the “steady state”

where we assume we have an

infinite supply of inputs.

Actually, it’s more like N*60 + 30

if we account for the startup

transient correctly. When doing

pipeline analysis, we’re mostly

interested in the “steady state”

where we assume we have an

infinite supply of inputs.

L09 - Pipelining 66.004 – Fall 2002 10/03/0

Some definitions
Latency:

The delay from when an input is established until the
output associated with that input becomes valid.

(Harvard Laundry = _________ mins)

(MIT Laundry = _________ mins)

Throughput:

The rate of which inputs or outputs are processed.

(Harvard Laundry = _________ outputs/min)

(MIT Laundry = _________ outputs/min)

90

120

1/90
1/60

Assuming that the wash

is started as soon as

possible and waits (wet)

in the washer until dryer

is available.

L09 - Pipelining 76.004 – Fall 2002 10/03/0

Okay, back to circuits…

F

G

HX P(X)

For combinational logic:
latency = tPD,
throughput = 1/tPD.

We can’t get the answer faster, but
are we making effective use of our
hardware at all times?

G(X)
F(X)

P(X)

X

F & G are “idle”, just holding their outputs

stable while H performs its computation

L09 - Pipelining 86.004 – Fall 2002 10/03/0

Pipelined Circuits
use registers to hold H’s input stable!

F

G

HX P(X)

15

20

25

Now F & G can be working on input Xi+1

while H is performing its computation on

Xi. We’ve created a 2-stage pipeline: if we

have a valid input X during clock cycle j,

P(X) is valid during clock j+2.

Suppose F, G, H have propagation delays of 15, 20, 25 ns and
we are using ideal zero-delay registers:

latency

45

throughput

1/45

unpipelined

2-stage pipeline 50
worse

1/25
better

L09 - Pipelining 96.004 – Fall 2002 10/03/0

Pipeline diagrams

Input

F Reg

G Reg

H Reg

i i+1 i+2 i+3

Xi Xi+1

F(Xi)

G(Xi)

Xi+2

F(Xi+1)

G(Xi+1)

H(Xi)

Xi+3

F(Xi+2)

G(Xi+2)

H(Xi+1)

Clock cycle
P

ip
e

lin
e

 s
t

a
g

e
s

The results associated with a particular set of input data

moves diagonally through the diagram, progressing

through one pipeline stage each clock cycle.

H(Xi+2)

…

…

F

G

HX P(X)

15

20

25

L09 - Pipelining 106.004 – Fall 2002 10/03/0

Pipeline Conventions
DEFINITION:

a K-Stage Pipeline (“K-pipeline”) is an acyclic circuit having exactly K registers
on every path from an input to an output.

a COMBINATIONAL CIRCUIT is thus an 0-stage pipeline.

CONVENTION:
Every pipeline stage, hence every K-Stage pipeline, has a register on its
OUTPUT (not on its input).

ALWAYS:
The CLOCK common to all registers must have a period sufficient to cover
propagation over combinational paths PLUS (input) register tPD PLUS
(output) register tSETUP.

The LATENCY of a K-pipeline is K times the
period of the clock common to all registers.

The THROUGHPUT of a K-pipeline is the
frequency of the clock.

The LATENCY of a K-pipeline is K times the
period of the clock common to all registers.

The THROUGHPUT of a K-pipeline is the
frequency of the clock.

L09 - Pipelining 116.004 – Fall 2002 10/03/0

For what value of K is the following circuit a K-Pipeline? ANS: ______

Ill-formed pipelines

B

CX

Y

A

Problem:

Successive inputs get mixed: e.g., B(A(Xi+1), Yi). This
happened because some paths from inputs to outputs

had 2 registers, and some had only 1!

Can this happen on a well-formed K pipeline?

none

Consider a BAD job of pipelining:

2

1

L09 - Pipelining 126.004 – Fall 2002 10/03/0

A pipelining methodology
Step 1:

Draw a line that crosses every output

in the circuit, and mark the endpoints

as terminal points.

Step 2:

Continue to draw new lines between

the terminal points across various

circuit connections, ensuring that

every connection crosses each line in

the same direction. These lines

demarcate pipeline stages.

Adding a pipeline register at every

point where a separating line crosses a

connection will always generate a valid

pipeline.

STRATEGY:

Focus your attention on placing

pipelining registers around the

slowest circuit elements

(BOTTLENECKS).

A
4 nS

B
3 nS

C
8 nS

D
4 nS

E
2 nS

F
5 nS

T = 1/8ns

L = 24ns

L09 - Pipelining 136.004 – Fall 2002 10/03/0

Pipeline Example

A

B

CX

Y

2

1

1

0-pipe:

1-pipe:

2-pipe:

3-pipe:

LATENCY THROUGHPUT

4 1/4

OBSERVATIONS:

• 1-pipeline improves
neither L or T.

• T improved by breaking long
combinational paths,
allowing faster clock.

• Too many stages cost L,
don’t improve T.

• Back-to-back registers
are often required to keep
pipeline well-formed.

4 1/4

1

4 1/2

2

1/26

3

L09 - Pipelining 146.004 – Fall 2002 10/03/0

Pipelining Summary
Advantages:

– Allows us to increase throughput, by breaking up long
combinational paths and (hence) increasing clock frequency

Disadvantages:

– May increase latency...

– Only as good as the weakest link: slowest step constrains
system throughput.

Isn’t there a way around this “weak link” problem?

L09 - Pipelining 156.004 – Fall 2002 10/03/0

but... but...

How can one pipeline

a clothes dryer???

A’ (2-pipe)

Pipelined Components

C
X

Y

1

Pipelined systems can be

hierarchical:

• Replacing a slow

combinational component

with a k-pipe version may

increase clock frequencyB
1

3
1

24

4-stage pipeline, throughput=1
• Must account for new

pipeline stages in our plan

L09 - Pipelining 166.004 – Fall 2002 10/03/0

How do 6.004 Aces do Laundry?

They work around the bottleneck.

First, they find a place with twice

as many dryers as washers.

Throughput = ______ loads/min

Latency = ______ mins/load

Step 1:

Step 2:

Step 3:

Step 4:

1/30

90

L09 - Pipelining 176.004 – Fall 2002 10/03/0

Circuit Interleaving
We can simulate a pipelined

version of a slow

component by replicating

the critical element and

alternate inputs between

the various copies.

C0
G

D Q

D Q

1

0

C’

G

D Q C1

Xi

C(Xi-2)

This is a simple

2-state FSM

that alternates

between 0 and 1

on each clock
clk

Q

L09 - Pipelining 186.004 – Fall 2002 10/03/0

Circuit Interleaving
We can simulate a pipelined

version of a slow

component by replicating

the critical element and

alternate inputs between

the various copies.

C0
G

D Q

D Q

1

0

C’

G

D Q C1

Xi

C(Xi-2)

clk

Q

When Q is 1 the lower path is

combinational (the latch is

open), yet the output of the

upper path will be enabled

onto the input of the output

register ready for the NEXT

clock edge.

Meanwhile, the other latch

maintains the input from the

last clock.

CoddC1 output

CevenMux output Codd

“It acts like a 2-stage pipeline”

L09 - Pipelining 196.004 – Fall 2002 10/03/0

C0
G

D Q

D Q

1

0

C’

G

D Q C1

Xi

x

x C(Xi-2)

C0
G

D Q

D Q

1

0

C’

G

D Q C1

X0

0

1 C(Xi-2)

C0
G

D Q

D Q

1

0

C’

G

D Q C1

X1

1

0 C(Xi-2)

C0
G

D Q

D Q

1

0

C’

G

D Q C1

X2

0

1 C(X0)

C0
G

D Q

D Q

1

0

C’

G

D Q C1

X3

1

0 C(X1)

Circuit Interleaving

Latency = 2 clocks
• Clock period 0: X0 presented at input,

propagates thru upper latch, C0.

• Clock period 1: X1 presented at input,

propagates thru lower latch, C1. C0(X0)

propagates to register inputs.

• Clock period 2: X2 presented at input,

propagates thru upper latch, C. C0(X0) loaded

into register, appears at output.

N-way
interleave

N-1 registers

…

N-way interleaving

is equivalent to

N pipeline Stages...

2-Clock Martinizing

“In by ti, out by ti+2”

L09 - Pipelining 206.004 – Fall 2002 10/03/0

Combining techniques

We can combine interleaving and

pipelining. Here, C’ interleaves two C

elements with a propagation delay of

8 nS. The resulting C’ circuit has a

throughput of 1/4 nS, and latency of

8 nS. This can be considered as an

extra pipelining stage that passes

through the middle of the C’ module.

One of our separation lines must

pass through this pipeline stage.

A
4 nS

B
3 nS

C’
2x4nS

D
4 nS

E
2 nS

F
5 nS

By combining interleaving with

pipelining we move the

bottleneck from the C element

to the F element.

T = 1/5ns

L = 25ns

L09 - Pipelining 216.004 – Fall 2002 10/03/0

And a little parallelism…

Step 1: We can combine interleaving

and pipelining with parallelism.

Throughput =

_______ load/min

Latency = _______ min

Step 2:

Step 3:

Step 4:

Step 5:

2/30 = 1/15

90

L09 - Pipelining 226.004 – Fall 2002 10/03/0

Control Structure Approaches

RIGID

Laid
Back

ALL computation “events”

occur at active edges of a

periodic clock: time is

divided into fixed-size

discrete intervals.

Synchronous

Events -- eg the loading of a

register -- can happen at at

arbitrary times.

Asynchronous

Timing dictated by

centralized FSM according

to a fixed schedule.

Globally Timed

Each module takes a START

signal, generates a

FINISHED signal. Timing is

dynamic, data dependent.

Locally Timed

L09 - Pipelining 236.004 – Fall 2002 10/03/0

Control Structure Alternatives

L
E

L
E

Control

Logic

Synchronous, globally-timed:

Control signals (e.g., load enables)

From FSM controller

X

“heres X”

“got X”

CLK

heres X

got X

X X2X1

Synchronous, locally-timed:

Local circuitry, “handshake” controls

flow of data:

X

“heres X”

“got X”
heres X

got X

X X2X1

Asynchronous, locally-timed system using transition signaling:

L09 - Pipelining 246.004 – Fall 2002 10/03/0

Self-timed Example

X

A
C

B

A(X)

here’s …

Got it.

L09 - Pipelining 256.004 – Fall 2002 10/03/0

Self-timed Example

Elegant, timing-independent design:

• Each component specifies its own time constraints

• Local adaptation to special cases (eg, multiplication by 0)

• Module performance improvements automatically exploited

• Can be made asynchronous (no clock at all!) or synchronous

X

A
C

B

A(X)

here’s …

Got it.

L09 - Pipelining 266.004 – Fall 2002 10/03/0

Control Structure Taxonomy

Synchronous Asynchronous

Globally
Timed

Locally
Timed

Centralized clocked
FSM generates all

control signals.

Central control unit tailors
current time slice to

current tasks.

Start and Finish signals
generated by each major

subsystem,
synchronously with

global clock.

Each subsystem takes
asynchronous Start,

generates asynchronous
Finish (perhaps using local

clock).

Easy to design but fixed-sized

interval can be wasteful (no data-

dependencies in timing)

Large systems lead to very

complicated timing generators…

just say no!

The best way to build large

systems that have

independently-timed

components.

The “next big idea” for the last

several decades: a lot of design

work to do in general, but extra

work is worth it in special cases

L09 - Pipelining 276.004 – Fall 2002 10/03/0

Summary
• Latency (L) = time it takes for given input to arrive at output

• Throughput (T) = rate at each new outputs appear

• For combinational circuits: L = tPD of circuit, T = 1/L

• For K-pipelines (K > 0):

• always have register on output(s)

• K registers on every path from input to output

• Inputs available shortly after clock i, outputs available

shortly after clock (i+K)

• T = 1/(tPD,REG + tPD of slowest pipeline stage + tSETUP)

– more throughput → split slowest pipeline stage(s)

– use replication/interleaving if no further splits possible

• L = K / T

– pipelined latency ≥ combinational latency

