
Lecture #5

In this lecture we will introduce the sequential circuits.

We will overview various Latches and Flip Flops (30 min)

Give Sequential Circuits design concept

Go over several examples as time permits

Control Circuitry Control Circuitry
Binary information is either data or control.
Data paths are responsible for processing the data,
Control signals are responsible for generation and sequencing of events.
Signals like “load” are used for example when and where to place a data item
in a register or “select” signal on a MUX to select an item or “Enable” signal to put data on a bus ….
The term sequential circuit is referred to circuits that sequence such events.

Types of Control

Programmed Non-programmed

Program Counter Hardwired
Memory Microcoded

(As in microprocessor) Finite state Machines covered in this lecture
Algorithmic State Machines covered in this lecture

Memory

Data Path

ControlI/O

Digital Design: Parameters to be considered

R S Qt+1
0 0 tq
0 1 1
1 0 0
1 1 —

R

S
Q

Q

RS Latch

Q+ = S + R’ Q

Two Problems:

R=S= 1 Not allowed, Data is transparent

Q

D

C

Q

Q
C

D

RS Flip Flop

The D Latch

Problem: Level sensitive

QKQJQ 1t tt
+=+

JK Flip Flop:

S

R

J

K

Q

Q

C

J

K

J

K

Q

Q

JK FF
J

K

Q

Q

C

JK Flip Flop with a rising-edge :

JK Latch : Universal, Level sensitive, Timing Constraints due to
feed back. Other latches can be constructed using JK Latch

D
Latch

D
Latch

Q

QD

C

QD

C

D

C

Q

Master Slave

Master and Slave Flip Flop :

A D Flip Flop with a falling-edge trigger.

Q

D

C

Master Slave Flip Flop Edge sensitive,Set up and Hold time

S

R

Clk

Q

Q

`

Edge triggered Flip Flop:
Set up and Hold time Constraints

Combinational
Logic

Memory

Input

Output

Excitation
VectorsStates

Example 1
Design a sequence detector that detects a sequence of 2 zeros or 3 ones on
an incoming serial data line. Assume an asynchronous reset that initializes
the machine.
Let input be x, and output be z.

Example 2
When a minor road crosses a highway a traffic controller is installed to control the flow of traffic. Normally the highway is given the right of way
and where is a demand on the minor road then the highway is interrupted to give access to the minor road. You are asked to design controller to work
on this principals.
The highway should be given the right of way. If any of the sensors on the minor road do not detect presence of a car or if the sensor does detect a
car but an amount of time equal to or greater than Timer long=T30 seconds, has not elapsed since last change.
If there was a car on the minor road and amount of time greater than Timer long has elapsed, then the traffic light should cycle through amber for
Timer short=3 seconds and change to Red, while minor road changes to Green. The minor road now should have access of the road while there is car
but never more than Timer long. The minor road then should cycle back to red through a Timer short=3 second. While the highway cycles back to
green

Minor Road
Sensor

Highway

Sensor

Example 3[1]
Design a Tool Booth Controller that controls the signal and the barrier of a toll booth on a highway. The Booth and Controller is shown in the figu
below and has the following components.
A sensor on the driveway that shows presence of a car , ie signal S=1, S=0 otherwise.
A coin machine receiving the exact coin. When coin is inserted, signal C =1, otherwise C=0 .
T=1 traffic light is green and the barrier open.
T=0 traffic light is red and the barrier is closed.
At normal times the tollbooth is idle. Traffic signal is red and the barrier is closed. When a car enters the driveway of the booth, then the presence
the car is detected with S=1 from the sensor. The controller then waits for the right coin. When the coin is inserted, C=1, then the traffic light turn
green T=1 and the barrier is raised. When the car passes all signals are reset and the barrier is lowered Assume there is room for one car only at th
booth.

Example
Design a sequence detector that detects a sequence of 2 zeros or 3 ones
on an incoming serial data line. Assume an asynchronous reset that initializes
the machine.

Let the input be x, and the output be z.
We have the following state diagram

0/1

P1
0/0 (01)

P0
(00)

1/0 1/0
0/0 0/0

P2 1/1
(10) P3

1/0 (11)

Controller for a Shift and Add Multiplier

8-Bit Ripple Carry Adder
Controller

8

reset

clk

START

STOP

A_in

B_in
RC

Multiplier_Result

Multiplicand

8

16

RA

RB

8

8

8

A
dd

_o
ut

C
_o

ut

LS
B

LOAD_cmd

MULTIPLIER

S
H

IF
T_

cm
d

A
D

D
_c

m
d

Multiplier Design Block Diagram

IDLE

STOP = 1

INIT
LOAD_cmd=1

TEST

ADD
ADD_cmd = 1

SHIFT
SHIFT_cmd =1
count=count+1

START = 0

START = 1

LSB = 0

LSB = 1

count /= 8

count = 8

Controller FSM Diagram

VHDL: Controller (COEN 6501)
--
--
-- Library Name : DSD
-- Unit Name : Controller
--
--
--
-- Date : Mon Oct 27 12:36:47 2003
--
-- Author : Giovanni D'Aliesio
--
-- Description: Controller is a finite state machine
-- that performs the following in each
-- state:
-- IDLE > samples the START signal
-- INIT > commands the registers to be
-- loaded
-- TEST > samples the LSB
-- ADD > indicates the Add result to be stored
-- SHIFT > commands the register to be shifted
--
--
.

Multiplier controller

Cell Information

--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
entity Controller is
port (reset : in std_logic ;

clk : in std_logic ;
START : in std_logic ;
LSB : in std_logic ;
ADD_cmd : out std_logic ;
SHIFT_cmd : out std_logic ;
LOAD_cmd : out std_logic ;
STOP : out std_logic);

end;

Reset ADD

Start SHIFT

LSB LOAD

clk STOP

Controller

Interface

architecture rtl of Controller is
signal temp_count : std_logic_vector(2 downto 0);
-- declare states
type state_typ is (IDLE, INIT, TEST, ADD, SHIFT);
signal state : state_typ;

begin
process (clk, reset)
begin if reset='0' then state <= IDLE;

temp_count <= "000";
elsif (clk'event and clk='1') then

case state is
when IDLE => if START = '1' then state <= INIT; else state <= IDLE; end if;
when INIT => state <= TEST;
when TEST = if LSB = '0' then state <= SHIFT else state <= ADD; end if;
when ADD => state <= SHIFT;
when SHIFT =>if temp_count = "111" then -- verify if finished

temp_count <= "000"; -- re-initialize counter
state <= IDLE; -- ready for next multiply

else temp_count <= temp_count + 1; -- increment counter
state <= TEST; end if;

end case;

end if;
end process;
STOP <= '1' when state = IDLE else '0';
ADD_cmd <= '1‘ when state = ADD else '0';
SHIFT_cmd <= '1' when state = SHIFT else '0';
LOAD_cmd <= '1' when state = INIT else '0';

end rtl;

IDLE

STOP = 1

INIT
LOAD_cmd=1

TEST

ADD
ADD_cmd = 1

SHIFT
SHIFT_cmd =1
count=count+1

START = 0

START = 1

LSB = 0

LSB = 1

count /= 8

count = 8

Controller Simulation Timing Diagram

STOP=1
STOP=1

RA ⇐ Multiplicand
RB ⇐ Multiplier
C=0 , STOP=0

Stop command

0 START=?

LOAD 1 001
Load command

TEST 010

Q0 = ?
C=C + 1

ADD 011

ACC <= ACC +RA ADD Commend C = C + 1

SHIFT 100
Shift Right C, ACC, RB Shift command

/=8 =8

C= 8 ?

