
 Floating Point Arithmetic

1 Introduction

Fixed point numbers suffer from limited range and accuracy. For a given word length

both fixed point and floating point representations give equal distinct numbers. The

difference is that in fixed point representation the spacing between the numbers is equal,

so smaller numbers when truncated or rounded give a much larger error than the larger

numbers. However floating point representation gives different spacing between

numbers. We get denser distances between numbers when the number is small and

sparser distance for larger numbers. So the absolute representation error increases with

larger numbers.

Floating point numbers are used to obtain a dynamic range for representable real numbers

without having to scale the operands. Floating point numbers are approximations of real

numbers and it is not possible to represent an infinite continum of real data into precisely

equivalent floating point value.

Number system is completely specified by specifying a suitable base , significand (or

mantissa) M, and exponent E. A floating point number F has the value

F=M
E

 is the base of exponent and it is common to all floating point numbers in a system.

Commonly the significand is a signed - magnitude fraction. The floating point format in

such a case consists of a sign bit S, e bits of an exponent E, and m bits of an unsigned

fraction M, as shown below

The value of such a floating point number is given by:

The most common representation of exponent is as a biased exponent, according to which

 bias is a constant and E
true

 is the true value of exponent. The range of E
true

 using the e

bits of the exponent field is

Unsigned Significand MExponent ES

F 1–
S
M

E
=

E E
true

bias+=

The bias is normally selected as the magnitude of the most negative exponent; i.e. 2
e-1

, so

that

The advantage of using biased exponent is that when comparing two exponents, which is

needed in the floating point addition, for example the sign bits of exponents can be

ignored and they can be treated as unsigned numbers

The way floating point operations are executed depends on the data format of the oper-

ands. IEEE standards specify a set of floating point formats, viz., single precision, single

extended, double precision, double extended. Table 1 presents the parameters of the

single and double precision data formats of IEEE 754 standard.

Fig.2 1 shows the IEEE single and double precision data formats. The base is selected as

2. Significands are normalized in such a way that leading 1 is guaranteed in precision (p)

data field. It is not the part of unsigned fraction so the significand is in the form 1.f. This

increases the width of precision, by one bit, without affecting the total width of the

format.

Table 1: Format parameters of IEEE 754 Floating Point Standard

Parameter Format

 Single

Precision

Double

Precision

Format width in bits 32 64

Precision (p) =

fraction + hidden bit

23 + 1 52 + 1

Exponent width in bits 8 11

Maximum value of

exponent

+ 127 + 1023

Minimum value of

exponent

-126 -1022

2
e 1–

E
true

2
e 1–

1– –

0 E 2
e

1–

The value of the floating point number represented in single precision format is

where 127 is the value of bias in single precision format (2
n-1

–1) and exponent E ranges

between 1 and 254, and E = 0 and E = 255 are reserved for special values.

The value of the floating point number represented in double precision data format is

Where1023 is the value of bias in double precision data format. Exponent E is in the

range.

The extreme values of E (i.e. E = 0 and E = 2047) are reserved for special values.

The extended formats have a higher precision and a higher range compared to single and

double precision formats and they are used for intermediate results [2].

2. Choice of Floating Point Representation

The way floating point operations are executed depends on the specific format used for

representing the operands. The choice of a floating point format for the hardware imple-

mentation of floating point units is governed by factors like the dynamic range require-

ments, maximum affordable computational errors, power consumption etc. The exponent

bit width decides the dynamic range of floating point numbers while the significand bit

(a) IEEE single precision data format

(b) IEEE double precision data format

Fig 2.1 - Single and double precision data formats of IEEE 754 standard

8 bit - biased
Exponent E

Sign
23 bits - unsigned fraction (f)

11 bit - biased
Exponent E

Sign
52 bits - unsigned fraction (f)

S

S

F 1–
S
1.f2

E 127–
=

F 1–
S
1.f2

E 1023–
=

1 E 2046

width decides the resolution. The dynamic range offered by floating point units is much

higher than that offered by fixed point units of equivalent bit width. Larger dynamic

range is of significant interest in many computing applications like in multiply -

accumulate operation of DSPs. But larger range is not needed in all the applications. The

actual bit-width required in many applications need not match with the ones provided by

IEEE standards. For example, considering the design of an embedded system, the choice

of IEEE data formats need not give optimal results. In some cases, even IEEE specified

rounding scheme may not guarantee acceptable accuracy. That means, depending on the

specifications of a certain application, dedicated system solutions can work with non

IEEE data formats as well as rounding schemes such that the real life input/output signals

satisfy the data processing goals required by the target application. Although custom

specification of floating point format do find some applications, in the recent years more

and more manufacturers are following IEEE standards for the design of their hardware.

IEEE compliance guarantees portability of software between different platforms.

Applications that do not need such portability need not stick to IEEE standards.

Examples_1:

For an 8 bit word, determine the range of values that it represents in floating point and the

accuracy of presentation for the following scenarios: (Assume a hidden 1 representation

and extreme values are not reserved).

a) If 3bits are assigned to the exponents

b) If 4 bits are assigned to the exponents

S E M

Answer:

a) S=0, E=3bits, M=4bits,

Then the bias is 2
n-1

 –1= 2
3-1

 –1= 3

 Maximum range,

0 1 1 1 1 1 1 1

 (-1)
0

1.1111 2
7-3

= 1.1111 2
4

= 11111=3110

 Minimum range, assuming exponent 000 is reserved for zero

0 0 0 1 0 0 0 0

 (-1)
0

1.0000 2
1-3

= 1.0000 2
-2

= 0.01=0.2510

b) S=0, E=4bits, M=3bits ,

Then the bias is 2
n-1

 –1= 2
4-1

 –1= 7

 Maximum range,

0 1 1 1 1 1 1 1

 (-1)
0

1.111 2
15-7

= 1.111 2
8

= 111100000= 48010

 Minimum range, assuming exponent 000 is reserved for zero

0 0 0 0 1 0 0 0

 (-1)
0

1.0000 2
1-7

= 1.0000 2
-6

= 0.000001=0.01562510

You must know that the total No. of numbers that can be represented is the same. The

difference between example (a) and example (b) is that the resolution of the numbers that

can be represented is different.

Exercise:

For a) above determine the decimal number corresponding to when M contains 0001 and

0010.

For b) above determine the decimal number corresponding to when M contains the

number 001 and 010.

Discuss the resolution of the numbers represented in (a) & (b).

Example_2

Represent 21.7510 in Floating point. Use the IEEE 754 standard.

Answer:

21.75 in binary is 10101.11 or 1.010111 2
4

S=0

Bias is 2
7
-1=127 E= 127 + 4 = 131

1bit 8 bits 23 bits

0 1 0 0 0 0 011 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Example _3

Represent -0.437510 in floating point, using IEEE standard 754

Answer:

Binary equivalent of –0.4375 = -.0111 or – 1.11 2
-2

S= 1

Exponent is –2 + 127 =125 or 01111101

1bit 8 bits 23 bits

1 01 1 1 1 1 01 1 1 0

3 IEEE Rounding

All real numbers can not be represented precisely by floating point representation. There

is no way to guarantee absolute accuracy in floating point computations. Floating point

numbers are approximations of real numbers. Also the accuracy of results obtained in a

floating point arithmetic unit is limited even if the intermediate results calculated in the

arithmetic unit are accurate. The number of computed digits may exceed the total number

of digits allowed by the format and extra digits have to be disposed before the final

results are stored in user-accessible register or memory. When a floating point number

has to be stored or output on the bus, then the width of the memory and the bus dictates

that certain numbers greater than the width of the significand to be removed. Rounding is

the process of removing the extra bits with the digital system resulting from internal

computation (higher precision) to the exact bus width. IEEE 754 standard prescribes

some rounding schemes to ensure acceptable accuracy of floating point computations.

The standard requires that numerical operations on floating point operands produce

rounded results. That is, exact results should be computed and then rounded to the nearest

floating point number using the ‘round to nearest - even’ approach. But in practice, with

limited precision hardware resources, it is impossible to compute exact results. So two

guard bits (G and R) and a third bit, sticky (S), are introduced to ensure the computation

results within an acceptable accuracy using minimum overhead.

The default rounding mode specified by the IEEE 754 standard is round to nearest - even.

In this mode, the results are rounded to the nearest values and in case of a tie, an even

value is chosen. Table 2.2, shows the operation of round to nearest - even, for different

instances of significand bit patterns. In this table, X represents all higher order bits of the

normalized significand beyond the LSBs that take part in rounding while the period is

Table 2.2: Round to nearest - even rounding

Significand Rounded

Result

Error Significand Rounded

Result

Error

X0.00 X0. 0 X1.00 X1. 0

X0.01 X0. - 1/4 X1.01 X1. - 1/4

X0.10 X0. - 1/2 X1.10 X1. + 1 + 1/2

X0.11 X1. + 1/4 X1.11 X1. + 1 + 1/4

separating p MSBs of the normalized significand from round (R) and sticky (S) bits. It

can be seen from the table that the average bias (which is the average of the sum of errors

for all cases) for the round to nearest scheme is zero. Fig 2.2 illustrates the relative

positions of the decision making bits. Rounding to the nearest value necessitate a

conditional addition of 1/2 ulp (units in the last place). The decision for such addition can

be reached through the evaluation of the LSB (M0) of the most significand p bits of the

normalized significand, the round (R) bit and the sticky (S) bit. Rounding is done only if

condition R.(M0 +S) is true (Boolean).

Example:

Round the following data structure, according to the nearest even

 M0 R S

0 01 1 1 1 1 01 1 1 0 1 1 1

Answer:

Since R(M0 + S) holds, then, the rounding will produce the following results:

0 01 1 1 1 1 01 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

4 Floating Point Multiplication

The algorithm of IEEE compatible floating point multipliers is listed in Table 2.3. Multi-

plication of floating point numbers F1 (with sign s1, exponent e1 and significand p1) and

F2 (with sign s2, exponent e2 and significand p2) is a five step process. Its flow chart is

presented in Fig 2.3 [2].

Figure 2.2 - Normalized Significand before rounding

p - 1 higher order bits M
0 R S

p bit significand field

Sticky bit

Round bit

Table 2.3: Floating point multiplication algorithm

Step 1

Calculate the tentative exponent of the product by adding the biased exponents

of the two numbers, subtracting the bias. The bias is 127 and 1023 for

single precision and double precision IEEE data format

respectively
e1 e2 bias–+

Step 2

If the sign of two floating point numbers are the same, set the sign of product to

‘+’, else set it to ‘-’.

Step 3

Multiply the two significands. For p bit significand the product is 2p bits wide

(p, the width of significand data field, is including the leading hidden bit (1)).

Product of significands falls within range:
1 product 4
Step 4

Normalize the product if MSB of the product is 1 (i.e. product of two

significands), by shifting the product right by 1 bit position and

incrementing the tentative exponent.
significands 2 Evaluate exception conditions, if any.

Step 5

Round the product if R(M0 + S) is true, where M0 and R represent the pth and

(p+1)st bits from the left end of normalized product and Sticky bit (S) is the

logical OR of all the bits towards the right of R bit. If the rounding condition is

true, a 1 is added at the pth bit (from the left side) of the normalized product.

If all p MSBs of the normalized product are 1’s, rounding can generate a carry-

out. In that case normalization (step 4) has to be done again.

1- Add the biased exponents of the two numbers,

2- Set the sign of the product to positive if the sign of the

3- Multiply the significands

Start

4- Normalize the product if its MSB is 1, by shifting it

Overflow or
Underflow?

5- Round the significand of result to the appropriate

Finish

Exception

Still normalize?

subtracting the bias from the sum to get the tentative
exponent of product

original operands are the same. If they differ make the
sign negative

right by 1 bit position and incrementing the exponent

Fig 2.3 - Block diagram of IEEE compliant floating point multiplication

number of bits

No

Yes

No

Yes

Fig 2.4 illustrate the process of significand multiplication, normalization and rounding.

Example:

Multiply the following two numbers. Use IEEE 754 standard:

A= 25.510 B= -0.37510

Answer:

A can be represented as A= 1.10011 * 2
4

or

exp= 127+ 4 = 13110, Sig =1.10011, S=0

B can be represented as B= 1.1 * 2
-2

or

exp= 127 -2= 12510 , sig =1.1 , S=1

Add exponent and subtract bias

Exponent = 1 0 0 0 0 01 1 + 0 1 1 1 1 1 0 1 - 0 1 1 1 1 1 1 1 = 1 0 0 0 0 0 0 1

Multiply Significands 1.1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 *

 1.1 0

 10.0110010000000000000000000000000000000000000

Now round the results.

Figure 2.4 - Significand multiplication, normalization and rounding

p-bit significand field

C
out

Result of significand multiplication before normalization shift

}

R SM
0

p - 1 higher order bits

Normalized product before Rounding

Input
Significands

2p bits

1 p - 1 lower order bits

p - 1 lower order bits1

Significands before multiplication

p-bit significand field

0 1 0 0 0 0 01 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 0 1 1 0

After rounding we get: 10. 01100100000000000000000

After normalization we get: 1. 0 0110010000000000000000 * 2
1

New exponent after normalization 1 0 0 0 0 0 0 1 + 0 0 0 0 0 0 0 1 = 1 0 0 0 0 0 1 0

 Final result

Unbiased value of exponent is 1000 0010 -0111 1111 = 0000-0011 ie (130-127 =3)10

A * B = 1. 0011001 * 2
3
 = -9.562510

Multiplier Architecture
A simple multiplier architecture is shown below:

The exponent logic is responsible for extracting the exponents and adding them and

subtracting the bias. The Control/Sign logic, decodes the sign bit (EXOR) and directs the

significands to the integer multiplier.

The results of the significands multiplication is rounded by the rounding logic and if

necessary is normalized through a shift operation. The exponent in updated by the

exponent increment block and the final results, are presented to the output logic. This

architecture is shown in figure below

1 1 0 0 0 0 0 1 0 0 0110 010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Exponent Sign Logic Significand
Multiplier

Roundin

g Logic

Normalization
Logic

Correction Shift

Resul

t Selector

Result Flags Logic

Significand1 Significand2 Exp1 Exp2 Sign1

Sign2

IEEE Product Flag

s

 This architecture can be improved by addition of two features as shown in the diagrams

below. A bypass is added so that Not-A-Number, such as non computing operations can

bypass the multiplication process. The architecture also features pipelining lines, where

the multiplier can be made to operate faster at the expense of latency.

 Control / Sign Logic

CPA / Rounding Logic

 Result Selector /
 Normalization Logic

Exponent Logic

 Significand Multiplier
 (Partial Product
 Processing)

 Result Integration / Flag Logic

 Exponent
 Incrementer

 Sticky Logic

 Exponents

IEEE product Flag bits

Input Floating Point Numbers

Bypass Logic

2nd

Critical
Path

1st

3rd

Path 2

Comparaison for the Scalable Single Data Path FPM, Double Data Path FPM and

Pipelined Double Data Path FPM is also done for IEEE single precision data format in

order to validate the findings that DDFPM require less power as compared to SDDFPM.

Table 2.4 below shows the results obtained by synthesizing the three design using 0.22

micron CMOS technology.

Table 2.4 : Comparaison of SDFPM,DDFPM,PDDFPM

 AREA

(cell)

POWER

(mW)

Delay

(ns)

Single Data Path FPM 2288.5 204.5 69.2

Double Data Path FPM 2997 94.5 68.81

Pipelined Double Data Path FPM 3173 105 42.26

As we can see from the Table 2.4 that the power reduction is quite significant in case of a

DDFPM as compare to SDFPM which is almost 53% . This validate our findings for the

the DDFPM require less power.

Pipelined DDFPM is designed in order to reduce the overall delay without much increase

in area and power. The findings show that the worst case delay is reduced by almost 39%,

however there is 5.5% increase in area and 10% increase in power which is quite

acceptable.

 Table Test Cases for IEEE Single Precision for SDFPM

Above is the synopsys simulation results of Single Data Path FP Multiplier

Case-1

Normal

Number

 S Exponent Significand

Operand1 0 10000001 00000000101000111101011

Operand2 0 10000000 10101100110011001100110

Result 0 10000010 10101101110111110011100

Case-2

Normal

Number

 S Exponent Significand

Operand1 0 10000000 00001100110011001100110

Operand2 0 10000000 00001100110011001100110

Result 0 10000001 00011010001111010110111

Case-1 Case-2

2.5 Floating Point Addition

The algorithm of addition of floating point numbers F1 (with sign s1, exponent e1 and

significand p1) and F2 (with sign s2, exponent e2 and significand p2) is listed in Table 2.5

[1], and block diagram is presented in Fig 2.5 [2].

Table 2.5: Floating point addition algorithm

Step 1

Compare the exponents of two numbers for and calculate the absolute value of difference

between the two exponents . Take the larger exponent as the tentative exponent of

the result.
e1 e2

e1 e2

Step 2
e1 e2–

Shift the significand of the number with the smaller exponent right through a number of bit positions

that is equal to the exponent difference. Two of the shifted out bits of the aligned significand are

retained as guard (G) and Round (R) bits. So for p-bit significands, the effective width of aligned

significand must be p + 2 bits. Append a third bit, namely the sticky bit (S), at the right end of the

aligned significand. The sticky bit is the logical OR of all shifted out bits.

Step 3

Add/subtract the two signed-magnitude significands using a (p + 3)-bit adder. Let the result of this

is SUM.

Step 4

Check SUM for carry out (Cout) from the MSB position during addition. Shift SUM right by one bit

position if a carry out is detected and increment the tentative exponent by 1. During subtraction,

check SUM for leading zeros. Shift SUM left until the MSB of the shifted result is a 1. Subtract the

leading zero count from tentative exponent.

Evaluate exception conditions, if any.

Step 5

Round the result if the logical condition R”(M0 + S’’) is true, where M0 and R’’ represent the pth

and (p + 1)st bits from the left end of the normalized significand. New sticky bit (S’’) is the logical

OR of all bits towards the right of the R’’ bit. If the rounding condition is true, a 1 is added at the

pth bit (from the left side) of the normalized significand.

If p MSBs of the normalized significand are 1’s, rounding can generate a carry-out. In that case

normalization (step 4) has to be done again.

1- Compare the exponent of the two numbers and find the

2- Shift the significand of the number with smaller
exponent right until its exponent would match the larger

Start

4- Normalize the sum, either shifting right by 1 bit and
incrementing the exponent or shifting left through a
number of bits (equal to leading zero count) and
decrementing the exponent

exponent difference

exponent

Overflow or
Underflow?

5- Round the significand of the result to the appropriate

Finish

Exception

Still normalize?

3- Add/subtract the aligned significands

number of bits

Fig 2.5 - Block diagram of IEEE compliant floating point addition

Yes

No

No

Yes

Example 2

Add the following two numbers. Use IEEE 754 standard:

A= 25.510 B= -63.2510

Answer:

A Can be represented as:

A= 1.10011 * 2
4

or

exp= 127+ 4 = 13110, Sig =1.10011, S=0

B Can be represented as

B= 1.1111101 * 2
5

or

exp= 127 +5= 13210 , Sig =1. 1111101 , S=1

Compare the exponents and determine the bigger number and make it the reference.

10 0 0 0 1 0 0 - 1 0 0 0 0 01 1 = 1

Shift the smaller number to the right by one place (normalizing to the exponents

difference of 1) gives significance of A= 0 . 1 1 0 0 1 1 * 2
5

Now Add both numbers together A 0 . 1 1 0 0 1 1 0 +

 B 1 . 1 1 1 1 1 0 1

Since B is –ve then taking it 2’s complement and performing addition, we get

 A 0 0 . 1 1 0 0 1 1 0 +

 B 1 0 . 0 0 0 0 0 1 1 2’s Complement of B

 1 0 . 1 1 0 1 0 0 1

Which is a –ve number. Taking its sign and magnitude gives the results as Significand of

the result = 0 1 . 0 0 1 0 1 1 1. with S=1

Therefore the results can now be integrated as

This is equal to - 1. 0 0 1 0 1 1 1 * 2
5

= - 37.7510

0 1 0 0 0 0 01 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 1 0 0 1 1 1 1 1 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 1 0 0 0 0 1 0 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Floating Point Adder Architecture

A block diagram of floating Point adder is shown below. Exponents, sign bits and the

significands are fed into the adder. The exponents subtractor gives the amount of shift,

while the comparator gives which operands is to be shifted. The right shift of the smaller

number is achieved by a barrel shifter. Inversion of one operand is achieved by the sign

bits and the bit inverters. The Adder adds the operands and passes the results to the

rounding logic. Leading Zero Anticipator logic determines the normalization needed

where the results are normalized and the exponents are adjusted. Finally the right

significand is selected and is passed to the output together with the exponents and the

sign. This architecture features two additional non standard blocks The LZA logic and the

lines where pipelining registers can be inserted to speed up the design

Control

exponent
0 1 0 1 0 1

compare right shifter

bit inverter bit inverter

LZA logic

LZA counter

56b adder

exponent
subtract

left shift incrementer

rounding control

selector

compensation
shifter

exponent
incrementer

difference

sign control

e1 e2 s1 s2

exponents significands

si
g
n

1

si
g
n

2

si
g

n

2.7 Exceptions

For the handling of arithmetic operations on floating point data, IEEE standard specifies

some exception flags. Some exception conditions are listed in Table 2.5 [3]. When the

results of an arithmetic operation exceeds the normal range of floating point numbers as

shown in Fig 2.7 [2], overflow or underflow exceptions are initiated. Please see Table 2.6

Table 2.5: Exceptions in IEEE 754

Exception Remarks

Overflow Result can be or default maximum value

Underflow Result can be 0 or denormal

Divide by Zero Result can be
Invalid Result is NaN

Inexact System specified rounding may be required

 Table 2.6: Operations that can generate Invalid Results

Operation Remarks

Addition/

Subtraction
An operation of the type

Multiplication An operation of the type x
Division Operations of the type and
Remainder Operations of the type x REM 0 and REM y

Square Root Square Root of a negative number

0 Positive numbersNegative numbers

Underflow

Within RangeWithin RangeOverflow Overflow

Fig 2.7 - Range of floating point numbers

Denormalized

Detection of overflow or underflow is quite straight forward as the range of floating point

numbers is associated with the value of exponents. Table 2.6 [1] lists all possible

operations that result in an invalid exception. During invalid exception the result is set to

a NaN (not a number). Inexact exceptions are true whenever the result of a floating point

operation is not exact and IEEE rounding is required [1]. In IEEE single precision data

format, width of exponent field is 8, so 256 combinations of exponent are possible.

Among them two are reserved for special values. The value e = 0 is reserved to represent

zero (with fraction f = 0) and denormalized numbers (with fraction). The value e = 255 is

reserved for (with fraction f = 0) and NaN (with fraction). The leading bit of

significands (hidden bit) is zero instead of one for all the special quantities.

R S

a
0

b
0

p - 1 higher order bits

p - 1 higher order bits

p bit significand field

Fig. 1 - Aligned significands

G

00 0

R’ S’G’C
out

Result of significand addition before normalization shift

Aligned

significands
}

R” S”M
0

p - 1 higher order bits

Normalized Significand before Rounding

Significands before addition

Fig 2.6 - Significand addition, normalization and rounding

f 0

f 0

Low Power Triple Data Path Adder, TFADD

In literature several architectures exist that improves on the basic adder. The TFADD is

such an architecture. It uses the range of values of the input data to decide on which path the

data should be processed. This architecture provides 3 data paths for data processing with

the bypass path being a non computing path. Data that do not require calculation such as

addition with zero or NaN passes through this path. The architecture is shown in the figure

below with the control state machine. If the exponents difference between the two operands

is “1” then the then there is no need for initial shift of one operand thus a barrel shifter can

be eliminated from this path, however we will need a barrel shifter for normalization. On the

other hand if the exponent difference is greater than 1, then there is a barrel shifter for initial

shifting of one operand, but there will be no need for a barrel shifter for normalization. Thus

each path is shorter by one barrel shifter. Depending on the operands value and sign, this

method has less delay and less power at the expense of extra area. The finite state machine

below shows the operation of the adder. State I is the bypass state, while state K, requires

no normalization barrel shifter. State J the data follows the middle path where there is no

need for the exponent alignment barrel shifter.

BP (bypass)

BP

LZB LZA

LZB LZA

LZA

LZB

I

JK

BP

Fig 4.2 - Block diagram of the TDPFADD

(0/1 Bit Right Shifter)

Adder/Rounding Logic

Leading Zero

Counting logic

Normalization

Result Selector

Data Selector/Pre-align

Exponent
Subtractor

(Left Barrel Shifter)

Data Selector

(Right Barrel Shifter)/
Complementer

Pre-alignment

Input Floating Point NumbersExponents

Control LogicExponent Logic

Bypass Logic

Result Integration/Flag Logic

Flags IEEE Sum

Adder/Rounding Logic

(1 bit Right/Left
Normalization

Shifter)

Exponent
Incr/Decr

Result
Selector

 This figure shows pipelining the TPFADD to speed up its operation

 Control Logic Exponent Logic

 Result Integration / Flag Logic

 Exponents

IEEE Sum

Input Floating Point Numbers

Bypass Logic

(0/1 Bit Right Shifter)

Adder/Rounding Logic

Leading Zero

Counter

Normalization

Result Selector

Data Selector/Pre-align

Exponent
Subtractor

(Barrel Shifter Left)

Data Selector

(Barrel Shifter Right)/

(1 bit Right/Left

Complementer

Pre-alignment

Normalization

Shifter)

Exponent
Incr/Decr

Result

Selector

Flag

1st

2nd

3rd

4th

5th

Critical Path

Adder/Rounding Logic

 TEST RESULTS [21]

Several tests on data has been carried out. In particular IEEE standard 754 for the single

and double precision have been tested for a variety of inputs to see its performance in

extreme conditions. The code out of the generator has also been synthesized by Synopsys

using Xilinx 4052XL-1 FPGA technology. The results are shown in Table below.

Table Comparison of Synthesis results for IEEE 754 Single Precision FP addition. Using

Xilinx 4052XL-1 FPGA

PARAMETERS SIMPLE TDPFAD

D

PIPE/

TDPFADD

Maximum delay, D

(ns)

327.6 213.8 101.11

Average Power, P

(mW)@ 2.38 MHz

1836 1024 382.4

Area A, Total

number of CLBs (#)

664 1035 1324

Power Delay Product

(ns. 10mW)

7.7. *10
4
 4.31 *10

4
. 3.82 *10

4

Area Delay Product

(10 # .ns)

2.18`*10
4
 2.21 * 10

4
 1.34 *10

4

Area-Delay
2
 Product

(10# . ns
2
)

7.13.*10
6
 4.73 * 10

6
 1.35 *10

6

Barrel Shifters
In many applications such as floating point adders or multipliers circuits are needed that

can shift several data items in one move, such a circuit is named barrel shifter. A variety

of barrel shifters exist each targeted towards a special application. We will not cover all

applications rather the principal operation. The figure below shows a right shift barrel

shifter constructed from four 4-1 multiplexer that performs 0, 1, 2 ,3 bits right shift of

data x3 x2 x1 x0 in response to the control input S1 S0.

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

0

0

0

0

0

0

X
0

X
1

X
2

X
3

S
1

S
0

For example if S1S0 is 11 then the output is 000x3. It is possible to change the shift order

by reconfiguring the inputs. It is also possible to make the data rotate, by appropriate

connection of input of the multiplexer. The circuit below shows a barrel shifter that

performs rotation of data input in accordance with the control table given below.

MUX

23

01

MUX

12 0

0

MUX

123 0

01

MUX

123 0

01

D
0

D
1D

2
D

3

Y
1Y

2
Y

3

S
0

Select Out Put
Si So Y3 Y2 Y1 Y0

 Operation

0 0 D3 D2 D1 D0 No Shift

0 1 D2 D1 D0 D3 Rotate Once

1 0 D1 D0 D3 D2 Rotate Twice

1 1 D0 D3 D2 D1 Rotate 3 times

Most barrel shifters however are designed with 2 to1 MUXs using distributed shifting

method. With the distributed method the delay is always proportional to log2 n where n is

the number of shifts required.

The figure below, shows this principal. At the first level of 2-1 Mux data are connected

into the MUX with one data difference. The out from this MUX is connected to a

second level of 2-1 MUX, with data connected with a difference of two bits. With the

3
rd

 level the process is repeated with 4 bits of shift.

w
1

w
0w

7 w
6

w
5 w

3w
4

w
2

MUX MUX MUX MUX MUX MUX MUX MUX

S
1

k
0

k
1

k
7

k
8

k
7

k
5

k
4

k
3

k
2

k
2

k
3

k
4

k
5

k
6

k
6

k
9

y
1

y
0y

7 y
6

y
5 y

3y
4

y
2

MUX MUX MUX MUX MUX MUX MUX MUX

S
2

w
0

w
1

w
7

w
10

w
9

w
5

w
6

w
5

w
4

w
2

w
3

w
4

w
7

w
8

w
6

w
11

k
1

k
0k

7 k
6

k
5 k

3k
4

k
2

MUXMUXMUX MUXMUXMUX MUX MUX

S
0

x
0

x
1

x
7

x
7

x
6

x
5

x
3

x
2

x
1

x
2

x
3

x
4

x
4

x
5

x
6

x
8

The diagram below shows setting S2=1, S1=0, S0=1, which gives us 5 shifts of data to

the right. The path of the first data bit output is shown.

w
1

w
0w

7 w
6

w
5 w

3w
4

w
2

MUX MUX MUX MUX MUX MUX MUX MUX

S
1

k
0

k
1

k
7

k
8

k
7

k
5

k
4

k
3

k
2

k
2

k
3

k
4

k
5

k
6

k
6

k
9

y
1

y
0y

7 y
6

y
5 y

3y
4

y
2

MUX MUX MUX MUX MUX MUX MUX MUX

S
2

w
0

w
1

w
7

w
10

w
9

w
5

w
6

w
5

w
4

w
2

w
3

w
4

w
7

w
8

w
6

w
11

k
1

k
0k

7 k
6

k
5 k

3k
4

k
2

MUXMUXMUX MUXMUXMUX MUX MUX

S
0

x
0

x
1

x
7

x
7

x
6

x
5

x
3

x
2

x
1

x
2

x
3

x
4

x
4

x
5

x
6

x
8

S0=1 S1=0 S2=1

References

[1] R. V. K. Pillai, "On low power floating point data path architectures", Ph. D thesis,

Concordia University, Oct. 1999.

[2] David Goldberg, "Computer Arithmetic", in Computer Architecture: A quantitative

approach, D. A. Patterson and J. L. Hennessy, Morgan Kaufman, San Mateo, CA,

Appendix A, 1990.

[3] David Goldberg, "What every computer scientist should know about floating-point

arithmetic", ACM Computing Surveys, Vol. 23, No. 1, pp. 5-48, March 1991.

[4] Israel Koren, "Compuer Arithmetic Algorithms", Prentice Hall, Englewood Cliffs,

1993.

[5] S.Y. Shah, (M.A.Sc. 2000) Thesis Title: " Low Power Floating Point Architectures

 for DSP."

[6] Andrew D. Booth, “A signed binary Multiplication Technique”, Quarterly J.

 Mechan. Appl. Math., 4: 236-240,1951.

[7] S. Shah, A. J. Al-Khalili, D. Al-Khalili, “Comparison of 32-bit Multipliers for

 Various Performance Measures,” in proceedings of ICM 2000, Nov.2000.

[8] J. Mori, M. Nagamatsu, M. Hirano, S. Tanaka, M. Noda, Y. Toyoshima, K.

 Hashim-oto, H. Hayashida, and K. Maeguchi, “A 10-ns 54*54-b parallel Structured

 Full array Multiplier with 0.5 micron CMOS Technology”, IEEE Journal of Solid

 State Circuits, vol.26, No.4, pp.600-606, April 1991.

[9] Paul J. Song Giovanni De Micheli, “ Circuit and Architecture Trade-offs for High-

 Speed Multiplication,” IEEE Journal of Solid State Circuits, vol 26, No. 9, pp.1184-

 1198, Sep. 1991.

[10] R. V. K. Pillai, D. Al-Khalili and A. J. Al-Khalili,” Low Power Architecture for

 Floating Point MAC Fusion,” in proceeding of IEE, Computers and Digital

Techniques.

[11] R. V. K. Pillai, D. Al-Khalili and A. J. Al-Khalili,” An IEEE Compliant Floating

 Point MAF,” in proc. Of VLSI’99, Portugal, Dec.99, pp.165-168, System on Chip,

 edited by L.M.Silveria, S. Devadas and R. Reis, Kluwer Academic Publishers.

[12] C.S. Wallace, “A suggestion for a Fast Multiplier”, IEEE Trans. Electronic

 Computers, vol.13, pp. 14-17, Feb 1964.

[13] L.Dadda, “ Some schemes for Parallel Multipliers”, Alta Freq., 34: 349-356, 1965.

[14] L.Dadda, “On Parallel Digital Multipliers”, Alta Freq., 45:574-580,1976.

[15] Weinberger A., “4:2 Carry Save Adder Module”, IBM Tech. Disclosure Bulletin,

 23,1981.

[15] O.L.MacSorley, High speed arithmetic in binary computers”, Proc.IRE, Vol. 49, pp

 67-91,1961.

[17] D. Villeger and V.G Oklobdzija, “Evaluation of Booth encoding techniques for

 parallel multiplier implementation”, Electronics Letters, Vol. 29, No. 23, pp.2016-

 2017, 11
th

 November 1993.

[18] R. V. K. Pillai, D. Al-Khalili and A. J. Al-Khalili, “Energy Delay Analysis of

 Partial Product Reduction Methods for Parallel Multiplier Implementation”, Digest

 Of Technical Papers- 1996 International Symposium on Low Power Electronics and

 Design.

[19] Hiroaki Suzuki, Hiroyuki Morinaka, Hiroshi Makino, Yasunobu Nakase, Koichiro

 Mashiko and Tadashi Sumi, “Leading –Zero Anticipatory Logic for High-Speed

 Floating Point Addition”, IEEE Jounal of Solid State Circuits, Vol.31, No.8 pp

 1157-1164, August 1996.

[20] Shehzad Ahmad, “CAD Tool Generating the Scalable & Synthesizable Floating

Point Multiplier,” M. Eng. Project. Dept. of Electrical and Computer Engineering,

Concordia University, Jan. 2004.

[21] Masood Shah, “A CAD Tool for Generating Scalable & Synthesizable Floating

Point Adders,” M. Eng. Project, Dept. of Electrical and Computer Engineering.

Concordia University, Jan. 2004.

Appendix [20]

Introduction to IEEE-754 standard

In the early days of computers, vendors start developing their own representations and

methods of calculations. These different approaches lead to different results in

calculations. So the IEEE organization defined in the IEEE-754 standard a representation

of the floating point numbers and the operations.

Representation

As in all floating point representations, the IEEE representation divides the number of

bits into three groups, the sign, the exponent and the fractional part.

Fractional part

Fractional part is represented as sign-magnitude, which needs a reserved bit for the sign.

The exponent

The exponent is based on the biased representation. This means if k is the value of the

exponent bits, then the exponent of the floating-point number is k the bias. So to

represent the exponent zero the bits should hold the value of the bias.

A.1 Hidden-bit

Another feature of the IEEE representation is the hidden bit. This bit is the only bit to

the left of the fraction point. This bit is assumed to be 1, which gives an extra bit of

storage in the representation to increases the precision.

Sign Bit

The sign bit is as simple as it gets. 0 denotes a positive number; 1 denotes a negative

number. Flipping the value of this bit flips the sign of the number.

A.2 Precision

The IEEE-754 defines set of precisions which depends on the number of bits used. There

are two main precisions, the single and the double.

A.2.1 Single Precision

The IEEE single precision floating point standard representation require a 32 bit word,

which may be represented as numbered from 0 to 31, right to left as shown

 MSB(31) 30 23 22 LSB(0)

S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF

A.2.2 Double Precision

The IEEE single precision floating point standard representation require a 32 bit word,

which may be represented as numbered from 0 to 63, right to left as shown

 MSB(63) 62 52 51 LSB(0)

S EEEEEEEEEEE FF

Table A.1: Exponent range and number of bits in single

 and double precision floating-point representation.

A.3 Normalization

Normalization is the act of shifting the fractional part in order to make the left bit of the

fractional point “1”. During this shift the exponent is incremented.

A.3.1 Normalized numbers

Normalized numbers are numbers that have their MSB a “1” in the most left bit of the

fractional part.

A.3.2 Denormalized numbers

Denormslized numbers are the opposite of the normalized numbers. (i.e. the MSB 1 is not

in the most left bit of the fractional part).

Operations:

Some operations require that the exponent field be the same for all operands (like

addition). In this case one of the operands should be denormalized.

A.3.3 Gradual underflow:

One of the advantages of the denormalized numbers is the gradual underflow. This came

from the fact the normalized number that can represent minimum number is 1.0×2
min

 and

all numbers smaller than that are rounded to zero (which means there are no numbers

between 1.0×2
min

 and 0. The denormalized numbers expands the range and gives gradual

underflow through the division of the range between 1.0×2
min

 to 0 with the same steps as

the normalized numbers.

 Single Double

Exponent(max) +127 +1023

Exponent(min) -126 -1022

Exponent Bias +127 +1023

Precision (#bits) 24 53

Total Bits 32 64

Sign bits 1 1

Exp Bits 8 11

Fraction 23 52

A.4 Special values

The IEEE-754 standard supports some special values that gives special functions and

give some signals.

Table A.2: Special values

Name Exponent Fraction sign Exp Bits Fract Bits

+0 min1 = 0 + All zeros All Zeros

0 min1 = 0 All zeros All Zeros

Number min e max any any Any Any

+ max+1 = 0 + All ones All zeros

 max+1 = 0 All ones All zeros

NaN Max+1 0 any All ones Any

A.4.1 Zero

The zero is represented as a signed zero (-0 and +0)

-1 in the exponent and zero in the fraction.

The signed zero is important for operations that preserve the sign like multiplication and

division. It is also important to generate + or -.

A.4.2 NaN

Some computations generate undefined results like 0/0 and √[(-1)]. These operations

should be handled or we will get strange results and behavior. NaN is defined to be

generated upon these operations and so the operations are defined for it to let the

computations continue.

Whenever a NaN participates in any operation the result is NaN.

There is a family of NaN according to the above table and so the Implementations are

free to put any information in the fraction part.

All comparison operators (= , < , ≤ , > , ≥) (except (≠)should return false when NaN is

one of its operands.

Table A.3: Sources of NaN

Operation Produced by

+ +()

× 0×

/ 0/0, /

A.4.3 Infinity

The infinity is like the NaN, it is a way to continue the computation when some

operations are occurred.

Generation:

Infinity is generated upon operations like x/0 where x ≠ 0

Results:

The results of operations that get ∞ as a parameter is defined as: "Replace the ∞ by the

limit limx

∞ . For example 3/∞ = 0 because limx→∞3/x = 0 and √{∞} = ∞ and 4-∞ =-∞

A.5 Exceptions

Exceptions are important factors in the standard to signal the system about some

operations and results.

When an exception occurs, the following action should be taken:

 A status flag is set.

 The implementation should provide the users with a way to read and write the

status flags.

 The Flags are ``sticky'' which means once a flag is set it remains until its

explicitly cleared.

 The implementation should give the ability to install trap handlers that can be

called upon exceptions.

 Common exceptions in floating-point numbers are:

 Overflow, underflow and division by zero:

As is obvious from the table below, the distinction between Overflow and

division by zero is to give the ability to distinguish between the source of the

infinity in the result.

 Invalid:

This exception is generated upon operations that generate NaN results. But

this is not a reversible relation (i.e. if the output is NaN because one of the

inputs is NaN this exception will not raise).

 Inexact:

It is raised when the result is not exact because the result can not be

represented in the used precision and rounding cannot give the exact result.

Table A.4: Exceptions in IEEE 754 standard

Exception Cased by Result

Overflow Operation produce large number

Underflow Operation produce small number 0

Divide by Zero x/0

Invalid Undefined Operations NaN

Inexact Not exact results Round(x)

A.6 IEEE Rounding:

As not all real numbers can be represented precisely by floating point representation,

there is no way to guarantee absolute accuracy in floating point computations. Floating

point numbers are approximations of real numbers. Also the accuracy of results obtained

 in a floating point arithemetic unit is limited, even if the intermediate results calculated

in the arithematic unit are accurate. The number of the computed digits may exceed the

total number of digits allowed by the format and extra digits have to be disposed before

the final results are stored in user-accessible register or memory.

IEEE 754 standard prescribes some rounding schemes to ensure acceptable accuracy of

floating point computations. The standard requires that numerical operations on floating

point operands produce rounded results. That’s is, exact results should be computed and

then rounded to the neareast floating point number using the “round to nearest – even”

approach. But in practice, with limited precision hardware resources, it is impossible to

compute exact results. So two guard bits (G & R) and third sticky (S) bit, are introduced

to ensure the computation of results within acceptable accuracy using minimum

overhead.

The default rounding mode specified by the IEEE 754 is round to nearest-even. In this

mode, the results are rounded to the nearest values and in case of a tie, an even value is

chosen. Table A .5 shows the operation of round to nearest – even, for different instances

of significand bit patterns. In this table X represents all higher order bits of the

normalized significand beyond the LSBs that take part in rounding while the period is

separating p MSBs of the normalized significand from round (R) and sticky (S) bits.

Table A.5: Round to nearest – even rounding

Significand
Rounded

Result
Error Significand

Rounded

Result
Error

X0.00 X0. 0 X1.00 X1. 0

X0.01 X0. - 1/4 X1.01 X1. - 1/4

X0.10 X0. - 1/2 X1.10 X1. + 1 + 1/2

X0.11 X1. + 1/4 X1.11 X1. + 1 + 1/4

It can be seen from the table that the average bias (which is the average of the sum of

errors for all cases) for the round to nearest scheme is zero. Fig A.1illustrate the relative

positions of the decision making bits. Rounding to the nearest value necessitate a

conditional addition of 1/2 ulp (units in the last place). The decision for such addition can

be reached through the evaluation of the LSB (M0) of the most significand p bits of the

normalized significand, the round (R) bit and the sticky (S) bit. Rounding is done only

if R(M0 + S) condition is true.

p - 1 higher order bits SRM0

p - bit significand field

Round bit

Sticky bit

 Figure A.1: Normalized Significand before rounding

APPENDIX B

EXAMPLES OF SDDITION AND MULTIPLICATION

 Let A= 24.25

 B= -0.125

Then A is represented as S=0

 M= 011000.01 = 1.100001 * 2
4

 E = 127 + 4 =131 where the bias is 2
8-1

 -1=127

 MSB(31) 30 23 22 LSB(0)

S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF

 A=
 MSB(31) 30 23 22 LSB(0)

0 1000 0011 10000100000000000000000000

 Then B is represented as S=1

 M= 0.001 = 1.0000 * 2
-3

 E = 127 + (-3) =124 where the bias is 2
8-1

 -1 =127

 B=
 MSB(31) 30 23 22 LSB(0)

1 0111 1100 00000000000000000000000000

ADDITION

Now trying addition of these numbers

A+ B =R

Initially compare exponent of A to exponent of B and select the larger and note the

difference.

eA > eB

and eA-eB =7

Now selecting the larger exponent to be the output exponent and shifting the smaller

number by 7 bits to the right to align the binary point

 Perform subtraction to obtain the significand of the reslt

 1.1000010 * 2
4

 - 0.0000001 * 2
4

 1.10000001 * 2
4

S R = 0

e R = 127 + 4 =131

MR = 1.10000001

R=
 MSB(31) 30 23 22 LSB(0)

0 1000 0011 10000010000000000000000000

Multiplication

Now trying multiplication of these numbers

A* B =R

Initially add the exponent of A to exponent of B and set the exponent of the results to

this addition eA + eB

and eA+ eB = 1000 0011 + 0111 1100 – 0111 1111 = 1000 0000

 Perform multiplication to obtain the significand of the result

 1.1000010

 0.0000001

 1.10000100

S R = 1

e R = 1000 0000

MR = 1.10000100

R=
 MSB(31) 30 23 22 LSB(0)

1 1000 0000 10000100000000000000000000

