Department of Electrical and Computer Engineering

Answer all Questions.
Exam Duration 3 hour
No books or papers are allowed.

All Questions carry equal marks
Lecturer: Asim J. Al-Khalili

Question 1

a) Discuss the merits of implementing digital circuits in FPGAs
b) Implement function F1 using 2, 3, and 4 variable LUT and select optimum implementation according to Table 1
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H})=\mathrm{ABC}+\mathrm{A}^{\prime} \mathrm{BE}+\mathrm{BCFGH}+\mathrm{CD}{ }^{\prime} \mathrm{FH}+\mathrm{AC} \mathrm{F}^{\prime} \mathrm{G}$

Table 1

Table Size, variables	Delay, ns	Area, mm^{2}
2	2	7
3	3	11
4	4	26

Question 2

Design the fastest circuit to implement the following function:
$\mathrm{F}=\mathbf{X} \mathrm{Y}-\mathrm{Z}$
where X and Y are 4-bit unsigned binary number and Z is 4-bit signed (2's complement) binary number:

$$
\mathbf{X}=\mathbf{x}_{3} \mathbf{x}_{2} \mathbf{x}_{1} \mathbf{x}_{0}, \quad \mathbf{Y}=\mathbf{y}_{3} \mathbf{y}_{2} \mathbf{y}_{1} \mathbf{y}_{0} \quad, \quad \mathbf{Z}=\mathbf{z}_{3} \mathbf{z}_{2} \mathbf{z}_{1} \mathbf{z}_{0}
$$

Identify the critical path and give estimated time in terms of full adders delay, T_{f}.

Question 3

Design a 4-bit ring counter with the following output: $0001,1000,0100,0010,0001,1000$ and so on... Start with a state diagram and follow sequential circuit design procedure. Use D Flip Flop for your implementation.

Question 4

a. Determine the maximum speed of operation at typical conditions for the serial multiplier control circuit shown in Fig. 1, taking into consideration the fan-out loading only. Timing parameters for all components are listed Table.2.
b. At the maximum speed of operation, determine the slack time for the setup time and hold time at the D-input of Flip-Flop U6.
c. After the realization of the circuit on a silicon chip, a delay of 3.5 ns has been introduced at the clock of $\mathrm{U} 1 \mathrm{~F} / \mathrm{F}$ relative to other clock signals. Calculate the maximum speed of operation.

Note: All inputs: Begin, Qo and Co have arrival time at $\mathrm{t}=-\infty$.

Fig. 1

Table 2

Component	Tp (ns)	Input Loading(UL)	K1 (ns/UL)
Inverter	1.5	1	0.2
2 input AND	2.0	1.5	0.25
2 input OR	2.5	1.5	0.25
D-F/F*	3.0	1 (all inputs)	0.2

* $\mathrm{t}_{\mathrm{su}}=1.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{h}}=\mathbf{0 . 5 n s}$

Question 5

The circuit shown in Fig. 2 operates in the military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ with a supply voltage fluctuation of $+/-10 \%$. The device is packaged in a flat pack with a thermal resistance of $30^{\circ} \mathrm{C} / \mathrm{W}$ and dissipates power of 3 W . The input signals, A, B and C arrive at $\mathrm{t}=0$.
The timing characteristics of each of the components of the circuit are shown in Table 3.
a. Determine the worst case arrival time of signal A at point D
b. Determine the maximum clock frequency of operation to guarantee reliable operation.

Fig. 2
Table 3- Timing Characteristics of Logic Gates

Gate	Intrinsic delay Tp (ns)	Input Loading (UL)	K1 (ns/UL)
2 input NAND	0.25	2	0.03
2 input XNOR	0.4	2	0.05
2 input Mux	0.3	1.5	0.1
D Flip-Flop (TCQ) Tsu=0.2ns, th=0.1ns	0.5	2	0.07

Equations

$$
\begin{aligned}
& T_{d}=\left(T_{p}+K_{1} \sum N_{i}+K_{2} M_{L}\right) \times K^{*} \quad K^{*}=K_{T} \times K_{V} \times K_{P} \\
& K_{T}=\left(\frac{T_{2}}{T_{1}}\right)^{M}, t_{j}=t_{a}+\Theta_{j a} \times P_{d}, \mathrm{M}=-1.5 \\
& K_{V}=\frac{1}{1+0.01 \times f_{s}} \quad K_{P}=1+0.01 \times f_{P}
\end{aligned}
$$

Question 6

a) Write a VHDL Code that represent the following circuit given in Fig. 3

Fig. 3
b) Find the Syntax and Semantic errors in the code below:

```
entity H_A_Con isL1
```port (X,Y:Istd_logic;...................................... L 2
SUM, CARRY:out std_logic); L3
end Half_A_Con; L4
architecture behavioral of H_A_Behav is L5
--signal X,Y:integer; L6
-signal SUM,CARRY:bit; L7
begin
process (X,Y); L8
variable Z:integer; L9
begin L10
SUM<='0'; L11
CARRY<='0'; L12
Z:=X+Y; L13
if (\(Z=1\)) then \(S U M<=' 1\) '; L14
elsif (Z=2) then CARRY<='1'; L15
end ; L17
end process; L18
end behavioral; L19```

