
Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

1

IEEE P1076.6/D2.01
Draft Standard For VHDL Register Transfer
Level Synthesis

Prepared by the VHDL Synthesis Interoperability Working Group of the
Design Automation Standards Committee

Copyright © 2001 by the Institute of Electrical and Electronics Engineers, Inc.
Three Park Avenue
New York, New York 10016-5997, USA
All Rights Reserved.

This document is an unapproved draft of a proposed IEEE-SA Standard – USE AT YOUR OWN RISK. As such,
this document is subject to change. Permission is hereby granted for IEEE Standards Committee participants to
reproduce this document for purposes of IEEE standardization activities only. Prior to submitting this document to
another standard development organization for standardization activities, permission must first be obtained from the
Manager, Standards Licensing and Contracts, IEEE Standards Activities Department. Other entities seeking
permission to reproduce portions of this document must obtain the appropriate license from the Manager, Standards
Licensing and Contracts, IEEE Standards Activities Department. The IEEE is the sole entity that may authorize the
use of IEEE owned trademarks, certification marks, or other designations that may indicate compliance with the
materials contained herein.

IEEE Standards Activities Department
Standards Licensing and Contracts
445 Hoes Lane, P.O. Box 1331
Piscataway, NJ 08855-1331, USA

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

2

Introduction
(This introduction is not part of IEEE P1076.6, Draft Standard for VHDL Register Transfer Level Synthesis).

This standard describes a standard syntax and semantics for VHDL RTL synthesis. It defines the subset of IEEE 1076
(VHDL) that is suitable for RTL synthesis and defines the semantics of that subset for the synthesis domain. This
standard is based on the standards IEEE 1076, 1164, and 1076.3.

The purpose of this standard is to define a syntax and semantics that can be used in common by all compliant RTL
synthesis tools to achieve uniformity of results in a similar manner to which simulation tools use the IEEE 1076
standard. This will allow users of synthesis tools to produce well defined designs whose functional characteristics are
independent of a particular synthesis implementation by making their designs compliant with this standard.
The standard is intended for use by logic designers and electronic engineers.

Initial work on this standard started as a synthesis interoperability working group under VHDL International. The
working group was also chartered by the EDA Industry Council Project Technical Advisory Board (PTAB) to
develop a draft based on the donated subsets by the following companies / groups:

• Cadence

• European Synthesis Working Group

• IBM

• Mentor Graphics

• Synopsys

After the PTAB approved of the draft 1.5 with an overwhelming affirmative response, an IEEE PAR was obtained to
clear its way for IEEE standardization. Most of the members of the original group continued to be part of the Pilot
Group under P1076.6 to lead the technical work.

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

3

Participants
At the time this standard was completed, the P1076.6 Pilot Team comprised of the following individuals:

Rob Anderson (Compiler directives) Apurva Kalia (Semantics task leader)
Victor Berman Masamichi Kawarabayashi
J. Bhasker (Working Group Chair) Jim Lewis
David Bishop (Web and reflector admin) Sanjiv Narayan
Dominique Borrione Doug Perry
Denis Brophy Steve Schultz
Ben Cohen Doug Smith (Editor / Attibutes task leader)
Colin Dente Lance Thompson (Syntax task leader)
Wolfgang Ecker Fur-Shing Tsai
Bob Flatt Jim Vellenga
Christopher Grimm Eugenio Villar
Rich Hatcher Nels Vander Zanden

Many individuals from different organizations contributed to the development of 1076.6. In particular, in addition to
the Pilot team, the following individuals contributed to the development of the standard by being part of the working
group:

Bill Anker John Hillawi
LaNae Avra Pradip Jha
Robert Blackburn

In addition, 95 individuals on the working group email reflector also contributed to this development.
The following persons were on the ballotting committee that approved this document for submission to the Standards
Board:

<list ballotting committee here>

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

4

This page is intentionally blank

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

5

Contents
1. Overview ...9

1.1 Scope... 9

1.2 Compliance to this standard .. 9
1.2.1 Model compliance ... 9
1.2.2 Tool compliance .. 9

1.3 Terminology .. 9

1.4 Conventions... 10

2. References ...10

3. Definitions ...10

4. Predefined types ...12

5. Verification methodology ..12

5.1 Combinational verification .. 13

5.2 Sequential verification... 13

6. Modeling hardware elements ..14

6.1 Edge-sensitive sequential logic.. 14
6.1.1 Clock signal type ... 14
6.1.2 Clock edge specification.. 14

6.1.2.1 Positive edge clock .. 15
6.1.2.2 Negative edge clock... 15

6.1.3 Modeling edge-sensitive storage elements... 16
6.1.3.1 Using the “if” statement ... 16
6.1.3.2 Using the “wait” statement... 16
6.1.3.3 With asynchronous control .. 17

6.2 Level-sensitive sequential logic... 18

6.3 Three-state and bus modeling.. 19

6.4 Modeling combinational logic... 19

7. Pragmas...19

7.1 Attributes... 20
7.1.1 ENUM_ENCODING attribute .. 20

7.2 Metacomments .. 20

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

6

8. Syntax ..21

8.1 Design entities and configurations... 21
8.1.1 Entity declarations ... 21

8.1.1.1 Entity header .. 22
8.1.1.2 Entity declarative part .. 22
8.1.1.3 Entity statement part .. 23

8.1.2 Architecture bodies.. 23
8.1.2.1 Architecture declarative part.. 23
8.1.2.2 Architecture statement part .. 24

8.1.3 Configuration declaration .. 24
8.1.3.1 Block configuration ... 25
8.1.3.2 Component configuration .. 25

8.2 Subprograms and packages ... 26
8.2.1 Subprogram declarations ... 26

8.2.1.1 Formal parameters ... 26
8.2.2 Subprogram bodies .. 26
8.2.3 Subprogram overloading ... 27

8.2.3.1 Operator overloading ... 27
8.2.4 Resolution functions .. 28
8.2.5 Package declarations.. 28
8.2.6 Package bodies .. 29

8.3 Types ... 30
8.3.1 Scalar types.. 30

8.3.1.1 Enumeration types ... 30
8.3.1.2 Integer types... 31
8.3.1.3 Physical types .. 31
8.3.1.4 Floating point types.. 32

8.3.2 Composite types .. 32
8.3.2.1 Array types... 32
8.3.2.2 Record types .. 33

8.3.3 Access types .. 33
8.3.3.1 Incomplete type declarations ... 33
8.3.3.2 Allocation and deallocation of objects... 33

8.3.4 File types ... 34
8.3.4.1 File operations ... 34

8.4 Declarations... 34
8.4.1 Type declarations... 34
8.4.2 Subtype declarations.. 35
8.4.3 Objects... 35

8.4.3.1 Object declarations .. 35
8.4.3.2 Interface declarations... 37
8.4.3.3 Alias declarations... 39

8.4.4 Attribute declarations .. 39
8.4.5 Component declarations .. 39
8.4.6 Group template declarations .. 39
8.4.7 Group declarations... 40

8.5 Specifications .. 40

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

7

8.5.1 Attribute specification ... 40
8.5.2 Configuration specification.. 41

8.5.2.1 Binding indication.. 41
8.5.2.2 Default binding indication ... 42

8.5.3 Disconnection specification... 42

8.6 Names.. 42
8.6.1 Names .. 42
8.6.2 Simple names... 42
8.6.3 Selected names .. 42
8.6.4 Indexed names ... 43
8.6.5 Slice names .. 43
8.6.6 Attribute names.. 43

8.7 Expressions.. 44
8.7.1 Expressions.. 44
8.7.2 Operators ... 45

8.7.2.1 Logical operators ... 45
8.7.2.2 Relational operators ... 45
8.7.2.3 Shift operators.. 45
8.7.2.4 Adding operators ... 46
8.7.2.5 Sign operators .. 46
8.7.2.6 Multiplying operators... 46
8.7.2.7 Miscellaneous operators .. 46

8.7.3 Operands.. 46
8.7.3.1 Literals ... 46
8.7.3.2 Aggregates ... 47
8.7.3.3 Function calls... 47
8.7.3.4 Qualified expressions... 47
8.7.3.5 Type conversions ... 48
8.7.3.6 Allocators... 48

8.7.4 Static expressions .. 48
8.7.4.1 Locally static primaries.. 48
8.7.4.2 Globally static primaries .. 48

8.7.5 Universal expressions .. 48

8.8 Sequential statements .. 48
8.8.1 Wait statement ... 49
8.8.2 Assertion statement.. 49
8.8.3 Report statement .. 49
8.8.4 Signal assignment statement .. 50

8.8.4.1 Updating a projected output waveform.. 50
8.8.5 Variable assignment statement... 51

8.8.5.1 Array variable assignments .. 51
8.8.6 Procedure call statement .. 51
8.8.7 If statement .. 51
8.8.8 Case statement ... 52
8.8.9 Loop statement .. 52
8.8.10 Next statement ... 53
8.8.11 Exit statement .. 53
8.8.12 Return statement .. 53

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

8

8.8.13 Null statement.. 53

8.9 Concurrent statements ... 54
8.9.1 Block statement ... 54
8.9.2 Process statement... 54
8.9.3 Concurrent procedure call statement ... 55
8.9.4 Concurrent assertion statement .. 56
8.9.5 Concurrent signal assignment statement .. 56

8.9.5.1 Conditional signal assignment ... 56
8.9.5.2 Selected signal assignments ... 57

8.9.6 Component instantiation statement .. 58
8.9.6.1 Instantiation of a component.. 58
8.9.6.2 Instantiation of a design entity ... 58

8.9.7 Generate statement... 58

8.10 Scope and visibility ... 59
8.10.1 Declarative region.. 59
8.10.2 Scope of declarations... 59
8.10.3 Visibility .. 59
8.10.4 Use clause.. 59
8.10.5 The context of overloaded resolution .. 59

8.11 Design units and their analysis .. 59
8.11.1 Design units ... 59
8.11.2 Design libraries.. 60
8.11.3 Context clauses .. 60
8.11.4 Order of analysis.. 60

8.12 Elaboration .. 60

8.13 Lexical elements.. 60

8.14 Predefined language environment ... 61
8.14.1 Predefined attributes .. 61

8.14.1.1 Attributes whose prefix is a type t.. 61
8.14.1.2 Attributes whose prefix is an array object a, or attributes of a constrained array subtype a............. 61
8.14.1.3 Attributes whose prefix is a signal s... 61
8.14.1.4 Attributes whose prefix is a named object e... 62

8.14.2 Package STANDARD ... 62
8.14.3 Package TEXTIO .. 63

 Annex A Syntax Summary (Informative) .. 65

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

9

1. Overview

1.1 Scope

This standard defines a means of writing VHDL that guarantees the interoperability of VHDL descriptions between
any register transfer level synthesis tools that comply with this standard. Compliant synthesis tools may have features
above those required by this standard. This standard defines how the semantics of VHDL shall be used, for example,
to model level and edge sensitive logic. It also describes the syntax of the language with reference to what shall be
supported and what shall not be supported for interoperability.

Use of this standard should enhance the portability of VHDL designs across synthesis tools conforming to this
standard. It should also minimize the potential of functional simulation mismatches between models before they are
synthesized and after they are synthesized.

1.2 Compliance to this standard

1.2.1 Model compliance

A VHDL model shall be defined as being compliant to this standard if the model:

a) Uses only constructs described as supported or ignored in this standard, and

b) Adheres to the semantics defined in this standard.

1.2.2 Tool compliance

A synthesis tool shall be defined as being compliant to this standard if it:

a) Accepts all models that adhere to the model compliance definition defined in 1.2.1.

b) Supports language related pragmas defined by this standard.

c) Produces a circuit model that has the same functionality as the input model based on the verification
process as outlined in section 5.

1.3 Terminology

The word shall indicates mandatory requirements strictly to be followed in order to conform to the standard and from
which no deviation is permitted (shall equals is required to). The word should is used to indicate that a certain course
of action is preferred but not necessarily required; or that (in the negative form) a certain course of action is
deprecated but not prohibited (should equals is recommended that). The word may indicates a course of action
permissible within the limits of the standard (may equals is permitted).

A synthesis tool is said to accept a VHDL construct if it allows that construct to be legal input; it is said to interpret
the construct (or to provide an interpretation of the construct) by producing something that represents the construct.
A synthesis tool is not required to provide an interpretation for every construct that it accepts, but only for those for
which an interpretation is specified by this standard.

The constructs in the standard shall be categorized as:

Supported RTL synthesis shall interpret a construct, that is, map the construct to
an equivalent hardware representation.

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

10

Ignored RTL synthesis shall ignore the construct. Encountering the construct
shall not cause synthesis to fail, but synthesis results may not match
simulation results. The mechanism, if any, by which RTL synthesis
notifies (warns) the user of such constructs is not defined by this
standard. Ignored constructs may include unsupported constructs.

Not supported RTL synthesis does not support the construct. RTL synthesis does not
expect to encounter the construct and the failure mode shall be
undefined. RTL Synthesis may fail upon encountering such a construct.
Failure is not mandatory; more specifically, RTL Synthesis is allowed
to treat such a construct as Ignored.

1.4 Conventions

This standard uses the following conventions:

a) The body of the text of this standard uses boldface to denote VHDL reserved words (such as downto) and
upper case to denote all other VHDL identifiers (such as REVERSE_RANGE or FOO).

b) The text of the VHDL examples and code fragments is represented in a fixed-width font.

c) Syntax text that is struck-through (e.g. text) refers to syntax that shall not be supported.

d) Syntax text that is underscored (e.g. text) refers to syntax that shall be ignored.

e) “<“ and “>” are used to represent text in one of several different, but specific forms. For example, one of
the forms of <clock_edge> could be “CLOCK'EVENT and CLOCK = '1'”.

f) Any paragraph starting with “Note --” is informative and not part of the standard.

g) The examples that appear in this document under "Example:", are for the sole purpose of demonstrating
the syntax and semantics of VHDL for synthesis. It is not the intent of this section to demonstrate,
recommend, or emphasize coding styles that are more (or less) efficient in generating an equivalent
hardware representation. In addition, it is not the intent of this standard to present examples that represent
a compliance test suite, or a performance benchmark, even though these examples are compliant to this
standard (except as noted otherwise).

2. References
This standard shall be used in conjunction with the following publications. When the following standards are
superseded by an approved revision, the revision shall apply.

IEEE Std 1076-1993, IEEE Standard VHDL Language Reference Manual.

IEEE Std 1164-1993, IEEE Standard Multivalue Logic System for VHDL Model Interoperability
(STD_LOGIC_1164).

IEEE Std 1076.3-1997, IEEE Standard Synthesis Packages (NUMERIC_BIT and NUMERIC_STD).

3. Definitions
Terms used within this standard but not defined in this section are assumed to be from IEEE Std 1076-1993 IEEE Std
1164-1993 and IEEE Std 1076.3-1997.

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

11

3.1 assignment reference: The occurrence of a literal or expression as the waveform element of a signal assignment
statement or as the right-hand side expression of a variable assignment statement.

3.2 don’t care value: The enumeration literal '-' of the type STD_ULOGIC (or subtype STD_LOGIC) defined by
IEEE Std 1164-1993.

3.3 edge-sensitive storage element: Any edge-sensitive storage element mapped to by a synthesis tool that:

a) propagates the value at the data input whenever an appropriate value is detected on a clock control input,
and

b) preserves the last value propagated at all other times, except when any asynchronous control inputs
become active.

(For example, a flip-flop.)

3.4 high-impedance value: The enumeration literal 'Z' of the type STD_ULOGIC (or subtype STD_LOGIC) defined
by IEEE Std 1164-1993.

3.5 level-sensitive storage element: Any level-sensitive storage element mapped to by a synthesis tool that:

a) propagates the value at the data input whenever an appropriate value is detected on a clock control input,
and

b) preserves the last value propagated at all other times, except when any asynchronous control inputs
become active.

(For example, a latch.)

3.6 logical operation: An operation for which the VHDL operator is and, or, nand, nor, xor, or not.

3.7 LRM: The IEEE VHDL language reference manual, that is, IEEE Std 1076-1993.

3.8 metacomment: A VHDL comment (--) that is used to provide synthesis specific interpretation by a synthesis
tool.

3.9 metalogical value: One of the enumeration literals 'U', 'X', 'W', or '-' of the type STD_ULOGIC (or subtype
STD_LOGIC) defined by IEEE Std 1164-1993.

3.10 pragma: A generic term used to define a construct with no predefined language semantics that influences how a
synthesis tool will synthesize VHDL code into an equivalent hardware representation.

3.11 RTL: The register transfer level of modeling circuits in VHDL for use with register transfer level synthesis.
Register transfer level is a level of description of a digital design in which the clocked behavior of the design is
expressly described in terms of data transfers between storage elements, which may be implied, and combinational
logic, which may represent any computing or arithmetic-logic-unit logic. RTL modeling allows design hierarchy that
represents a structural description of other RTL models.

3.12 synthesis tool: Any system, process, or tool that interprets register transfer level VHDL source code as a
description of an electronic circuit and derives a netlist description of that circuit.

3.13 user: A person, system, process, or tool that generates the VHDL source code that a synthesis tool processes.

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

12

3.14 vector: A one-dimensional array.

3.15 well-defined: Containing no metalogical or high-impedance element values.

3.16 synthesis-specific attribute: An attribute recognized by an RTL synthesis compliant tool as described in
Section 7.1.

3.17 synchronous assignment: An assignment that takes place when a signal or variable value is updated as a direct
result of a clock edge expression evaluating as true.

4. Predefined types
A synthesis tool, compliant with this standard, shall support the following predefined types:

a) BIT, BOOLEAN, and BIT_VECTOR as defined by IEEE Std 1076-1993

b) CHARACTER and STRING as defined in IEEE Std 1076-1993

c) INTEGER as defined in IEEE Std 1076-1993

d) STD_ULOGIC, STD_ULOGIC_VECTOR, STD_LOGIC, and STD_LOGIC_VECTOR as defined by
the package STD_LOGIC_1164 (IEEE Std 1164-1993)

e) SIGNED and UNSIGNED as defined by the VHDL package NUMERIC_BIT as part of IEEE Std
1076.3-1997

f) SIGNED and UNSIGNED as defined by the VHDL package NUMERIC_STD as part of IEEE Std
1076.3-1997

No array type, other than those listed in (e) and (f), shall be used to represent signed or unsigned numbers.

The synthesis tool shall also support user-defined and other types derived from the predefined types according to the
rules of 8.3.

By definition, if a type with a metalogical value is used in a model, then this type shall have as an ancestor, a type that
belongs to the package STD_LOGIC_1164 (IEEE Std 1164-1993).

5. Verification methodology
Synthesized results may be broadly classified as either combinational or sequential. Sequential logic has some form
of internal storage (latch, register, memory). Combinational logic has outputs that are solely a function of the inputs
with no internal loops and no internal storage. Designs may contain both sequential and combinational parts.

The process of verifying synthesis results using simulation consists of applying equivalent inputs to both the original
model and synthesized models and then comparing their outputs to ensure that they are equivalent. Equivalent in this
context means that a synthesis tool shall produce a circuit that is equivalent at the input, output, and bidirectional
ports of the model. Since synthesis in general does not recognize the same delays as simulators, the outputs cannot be
compared at every simulation time. Rather, they can only be compared at specific simulation times when all transient
delays have settled and all active timeout clauses have been exceeded. If the outputs do not match at all comparable
times, the synthesis tool shall not be compliant. There shall be no matching requirement placed on any internal nodes.

The input stimulus shall comply with the following criteria:

a) Input data does not contain metalogical values.

b) Input data may only contain 'H' and 'L' on inputs that are converted to '1' and '0' respectively.

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

13

c) For combinational verification, input data must change far enough in advance of sensing times to allow
transient delays to have settled.

d) Clock and/or input data must change after enough time of the asynchronous set/reset signals going from
active to inactive to take care of the setup/hold times of the sequential elements in the design.

e) For edge-sensitive based designs, primary inputs of the design must change far enough in advance for the
edge-sensitive storage element input data to respect the setup times with respect to the active clock edge.
Also, the input data must remain stable for long enough to respect the hold times with respect to the active
clock edge.

f) For level-sensitive storage element based designs, primary inputs of the design must change far enough in
advance for the level-sensitive storage element input data to respect the setup times. Also, the input data
must remain stable for long enough to respect the hold times.

Note -- A synthesis tool may define metalogical values appearing on primary outputs in one model as equivalent to
logical values in the other model. For this reason, the input stimulus may need to reset internal storage elements to
specific logical values before the outputs of both models are compared for logical values.

5.1 Combinational verification

To verify combinational logic, the input stimulus shall be applied first. Sufficient time shall be provided for the
design to settle, and then the outputs examined. To verify the combinational logic portion of a model the following
sequence of events shall be done repeatedly for each input stimulus application:

a) Apply input stimulus

b) Wait for data to settle

c) Check outputs

Each application of inputs shall include enough delay so that the transient delays and timeout clause delays have been
exceeded. A model is not in compliance with this standard if it is possible for outputs or internal nodes of the
combinational model never to reach a steady state (i.e., oscillatory behavior).

Example:

A <= not A after 5 ns; -- oscillatory behavior, noncompliant

5.2 Sequential verification

The general scheme consists of applying inputs periodically and then comparing the outputs just before the next set of
inputs is applied. Sequential models contain edge-sensitive and/or level-sensitive storage elements. The sequential
design must be reset, if required, before verification can begin.

The verification of designs containing edge-sensitive or level-sensitive storage elements is as follows:

a) Edge-sensitive models: The same sequence of tasks as used for combinatorial verification shall be
performed during verification: change the inputs, compute the results, compare the outputs. However, for
sequential verification these tasks shall be synchronized with one of the inputs which is a clock. The
inputs must change in an appropriate order with respect to the input that is treated as a clock, and their
consequences must be allowed to settle prior to comparison. Comparison might best be done just before
the active clock edge and the non-clock inputs can change relatively soon after the edge. The circuit then
has the rest of the clock period to compute the new results before they are stored at the next clock edge.
The period of the clock generated by the stimulus shall be sufficient to allow the input and output signals
to settle.

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

14

b) Level-sensitive models: These designs are generally less predictable than edge-sensitive models due to
the asynchronous nature of the signal interactions. Verification of synthesized results depends on the
application. With level-sensitive storage elements, a general rule is that data inputs should be stable
before enables go inactive (i.e. latch) and comparing of outputs is best done after enables are inactive (i.e.
latched) and combinational delays have settled. A level-sensitive model in which it is possible, in the
absence of further changes to the inputs of the model, for one or more internal values or outputs of the
model never to reach a steady state (oscillatory behavior) is not in compliance with this standard.

6. Modeling hardware elements
This section specifies styles for modeling hardware elements such as edge-sensitive storage elements, level-sensitive
storage elements and three-state drivers.

This section does not limit the optimizations that can be performed on a VHDL model. The scope of optimizations
that may be performed by a synthesis tool, depends on the tool itself. The hardware modeling styles specified in this
section do not take into account any optimizations or transformations. A specific tool may perform optimizations and
may not generate the suggested hardware inferences, or it may generate a different set of hardware inferences. This
shall NOT be taken as a violation of this standard provided the synthesized netlist has the same functionality as the
input model , as characterized in section 5.

6.1 Edge-sensitive sequential logic

6.1.1 Clock signal type

The allowed types for clock signals shall be: BIT, STD_ULOGIC and their subtypes (e.g. STD_LOGIC) with a
minimum subset of '0' and '1'. Only the values ‘0’ and ‘1’ from these types shall be used in expressions representing
clock levels and clock edges (See 6.1.2).

Scalar elements of arrays of the above types shall be supported as clock signals.

Example:

signal BUS8: std_logic_vector(7 downto 0);
...
process (BUS8(0))
begin
if BUS8(0) = '1' and BUS8(0)'EVENT then
...
...
-- BUS8(0) is a scalar element used as a clock signal.

6.1.2 Clock edge specification

The function RISING_EDGE shall represent a rising edge and the function FALLING_EDGE shall represent a
falling edge, where RISING_EDGE and FALLING_EDGE are the functions declared either by the package
STD_LOGIC_1164 of IEEE Std 1164-1993 or by the package NUMERIC_BIT defined by IEEE Std 1076.3-1997.

clock_edge ::=
 RISING_EDGE(clk_signal_name)
| FALLING_EDGE(clk_signal_name)
| clock_level and event_expr
| event_expr and clock_level

clock_level ::=
clk_signal_name = '0' | clk_signal_name = '1'

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

15

event_expr ::=
clk_signal_name'EVENT

| not clk_signal_name'STABLE

6.1.2.1 Positive edge clock

The following expressions shall represent a positive clock edge when used as a condition in an if statement (positive
<clock_edge>):

a) RISING_EDGE(clk_signal_name)

b) clk_signal_name'EVENT and clk_signal_name = '1'

c) clk_signal_name = '1' and clk_signal_name'EVENT

d) not clk_signal_name'STABLE and clk_signal_name = '1'

e) clk_signal_name = '1' and not clk_signal_name'STABLE

The following expressions shall represent a positive clock edge when used as a condition in a wait until statement
(positive <clock_edge> or <clock_level>):

a) RISING_EDGE(clk_signal_name)

b) clk_signal_name = '1'

c) clk_signal_name'EVENT and clk_signal_name = '1'

d) clk_signal_name = '1' and clk_signal_name'EVENT

e) not clk_signal_name'STABLE and clk_signal_name = '1'

f) clk_signal_name = '1' and not clk_signal_name'STABLE

6.1.2.2 Negative edge clock

The following expressions shall represent a negative clock edge when used as a condition in an if statement (negative
<clock_edge>):

a) FALLING_EDGE(clk_signal_name)

b) clk_signal_name'EVENT and clk_signal_name = '0'

c) clk_signal_name = '0' and clk_signal_name'EVENT

d) not clk_signal_name'STABLE and clk_signal_name = '0'

e) clk_signal_name = '0' and not clk_signal_name'STABLE

The following expressions shall represent a negative clock edge when used as a condition in a wait until statement
(negative <clock_edge> or <clock_level>):

a) FALLING_EDGE(clk_signal_name)

b) clk_signal_name = '0'

c) clk_signal_name'EVENT and clk_signal_name = '0'

d) clk_signal_name = '0' and clk_signal_name'EVENT

e) not clk_signal_name'STABLE and clk_signal_name = '0'

f) clk_signal_name = '0' and not clk_signal_name'STABLE

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

16

6.1.3 Modeling edge-sensitive storage elements

A synchronous assignment takes place when a signal or variable is updated as a direct result of a clock edge
expression evaluation to true.

A signal updated with a synchronous assignment should model one or more edge-sensitive storage elements.

A variable updated in a synchronous assignment should model an edge-sensitive storage element. If simulation
semantics suggest that the value of the variable is read before it is written, then an edge-sensitive storage element
should be modeled by the variable. By optimization, the generated edge-sensitive storage may be eliminated.

Only one clock edge shall be allowed per process statement (including any procedures called within the process).
Conditional or selected signal assignments shall not be used to model a edge-sensitive storage element (see 8.9.5).

No wait statements are allowed in a procedure (8.2.2).

6.1.3.1 Using the “if” statement

An edge-sensitive storage element may be modeled using a clock edge with an if statement. The template for
modeling such an edge-sensitive storage element shall be:

[process_label:] process (<clock_signal>)
<declarations>
begin
if <clock_edge> then

<sequence_of_statements>
end if;
end process [process_label];

The clock signal in <clock_edge> shall be listed in the process sensitivity list.

Sequential statements preceding or succeeding the if statement shall not be supported.

Example:

DFF: process(CLOCK)
begin

if CLOCK'EVENT and CLOCK = '1' then
Q <= D; -- Q models a rising edge triggered storage element

end if;
end process DFF;

6.1.3.2 Using the “wait” statement

An edge-sensitive storage element may be modeled using a clock edge as a condition in a wait until statement. The
wait until statement shall be the first statement in the process. No additional wait until statements shall appear
within such a process including any procedures called within the process. The template for modeling such an edge-
sensitive storage element shall be:

[process_label:]
process

<declarations>
begin

wait until <clock_edge>; -- this must be the first statement in the process
<sequence_of_statements>

end process [process_label];

Note 1 -- Because the wait until statement must appear as the first statement of the process, an asynchronous
override (set or reset) of edge-sensitive storage elements can not be represented using the wait until statement form.

Note 2 -- Conditional or selected signal assignments shall not be used to represent edge-sensitive storage elements.

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

17

Example:

DFF1: process
begin

wait until CLOCK = '0';
Q <= D; -- Q models a falling edge triggered storage element

end process DFF1;

Example:

DFF2: process
variable VAR: UNSIGNED(3 downto 0);

begin
wait until CLOCK = '1';

VAR := VAR + 1;
COUNT <= VAR;

end process DFF2;

-- Variable VAR should model four rising edge-triggered storage elements because the
-- value of VAR is read in the first assignment before its value is assigned.
-- By optimization, some edge-triggered storage elements may be eliminated.

Example:

DFF3: process
variable VAR: UNSIGNED(3 downto 0);

begin
wait until CLOCK = '1';

VAR := COUNT; -- Variable is written prior to being read.
VAR := VAR + 1; -- VAR is combinational.
COUNT <= VAR; -- Count models edge-sensitive storage elements.

end process DFF3;

-- Variable VAR should not model edge-sensitive storage elements because VAR is
-- assigned a value before its value is read.

6.1.3.3 With asynchronous control

A variable or a signal that is synchronously assigned may also be asynchronously assigned to model asynchronous
set/reset edge-sensitive storage elements. Such a variable or a signal models an asynchronous set/ reset edge-sensitive
storage element. The template for representing such edge-sensitive storage elements shall be:

[process_label:]
process (<clock_signal>, <asynchronous_signals>)

<declarations>
begin

if <condition1> then
<sequence_of_statements>

elsif <condition2> then
<sequence_of_statements>

elsif <condition3> then
...

elsif <clock_edge> then
<sequence_of_statements>

end if;
end process [process_label];

The if branches preceding the last clock edge branch represents the asynchronous set/reset logic.

A clock edge shall only appear in the last elsif condition.

Sequential statements, as used in the template above, shall not include any if statements conditional on a clock edge.

The sensitivity list of the process shall include all of the following:

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

18

a) The clock signal sensed by the clock edge expression.

b) All signals sensed by the remaining conditions of the if statement.

c) All signals sensed by the sequential statements governed by the remaining conditions of the if statement
other than the clock edge expression.

No signals other than those identified in the above list shall appear in the sensitivity list.

The order of the signals in the sensitivity list is not important.

Sequential statements preceding or succeeding the if statement shall not be supported.

Note 1 -- Asynchronous set-reset conditions are level sensitive, that is, they cannot contain a clock edge expression.
Additionally, these conditions have a higher priority than the clock edge condition.

Note 2 -- It is not necessary to describe both set and reset cases if the desired implementation does not require both of
these features. Either, or both may be modeled in the RTL model.

Note 3 -- The vhdl semantics shall be followed in resolving any priority between set and reset.

Example:

AS_DFF: process (CLOCK, RESET, SET, SET_OR_RESET, A)
begin

if RESET = '1' then
Q <= '0';

elsif SET = '1' then
Q <= '1';

elsif SET_OR_RESET = '1' then
Q <= A;

elsif CLOCK'EVENT and CLOCK = '1' then
Q <= D;

end if;
end process AS_DFF;

-- Signal Q models an asynchronous reset/set rising edge triggered
-- edge-sensitive storage element. The reset expression is RESET, the set
-- expression is SET, and SET_OR_RESET may be either a reset condition or a set
-- condition according to the value of A.

6.2 Level-sensitive sequential logic

A level-sensitive storage element shall be modeled for a signal (or variable) when all the following apply:

a) The signal (or variable) is assigned either directly in a process, or assigned within a subprogram invoked
within the process, and the process contains no clock edge construct.

b) There are executions of the process that do not execute an explicit assignment (via an assignment
statement) to the signal (or variable).

A level-sensitive storage element may be modeled for a signal (or variable) when all the following apply:

a) The signal (or variable) is assigned in a process that contains no clock edge construct.

b) There are executions of the process in which the value of the signal (or variable) is read before its
assignment.

The process sensitivity list shall list all signals read within the process statement. Processes with incomplete
sensitivity lists are not supported.

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

19

Note 1 -- Variables declared in subprograms never model level-sensitive storage elements because variables declared
in subprograms are always initialized in every call.

Note 2 -- Conditional or selected signal assignments shall not be used to model a level-sensitive storage element (see
8.9.5).

Note 3 -- When a signal is assigned from within a procedure it shall have the same inference semantics as a signal
assignment from within a process.

Note 4 -- It is recommended to avoid a modeling style in which the value of a signal or variable is read before its
assignment. This would avoid the generation of unwanted storage elements where none might be intended.

Example:

LEV_SENS: process (ENABLE, D)
begin

if ENABLE = '1' then
Q <= D; -- Q is an incomplete asynchronous assignment,

end if; -- so it models a level-sensitive storage element.
end process;

6.3 Three-state and bus modeling

Three-state logic shall be modeled when an object or an element of the object is explicitly assigned the IEEE Std
1164-1993 value 'Z'.

The assignment to 'Z' shall be a conditional assignment, that is, assignment occurs under the control of a condition.

For a signal that has multiple drivers, if one driver has an assignment to 'Z', all drivers shall have at least one
assignment to 'Z'.

Note --If an object is assigned a value 'Z' in a process that is edge-sensitive or level-sensitive, as described in 6.2 and
6.3, a synthesis tool may infer sequential elements on all inputs of the three-state logic.

6.4 Modeling combinational logic

Any process that does not contain a clock edge or wait statement shall model either combinational logic or level-
sensitive sequential logic.

If there is always an assignment to a variable or signal in all possible executions of the process and all variables and
signals have well-defined values, then the variable or signal models combinational logic.

a) If the signal or variable is updated before it is read in all executions of a process, then it shall model
combinational logic.

b) If a signal or variable is read before it is updated then it may model combinational logic.

Concurrent signal assignment statements (See 8.9.5) and concurrent procedure calls (8.9.3) always model
combinational logic.

The process sensitivity list shall list all signals read within the process statement.

7. Pragmas
Pragmas influence how a model is synthesized. The following pragmas may appear within the VHDL code:

a) Attributes

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

20

b) Metacomments

7.1 Attributes

Only one attribute with a synthesis-specific interpretation shall be supported for synthesis: ENUM_ENCODING. All
others shall be ignored.

7.1.1 ENUM_ENCODING attribute

An attribute named ENUM_ENCODING shall provide a means of encoding enumeration type values. The attribute
specification for this attribute shall specify the encoding of the enumeration type literals in the form of a string. This
string shall be made up of tokens separated by one or more spaces. There shall be as many tokens as there are literals
in the enumeration type, with the first token corresponding to the first enumeration literal, the second token
corresponding to the second enumeration literal, and so on.

Each token shall be made up of a sequence of '0' and '1' characters. Character '0' shall represent a logic 0 value and
character '1' shall represent a logic 1 value. Additionally, each token may optionally contain underscore characters;
these shall be used for enhancing readability and are to be ignored. All tokens shall be composed of the same number
of characters (ignoring the underscore characters). Given the following enumerated type declaration and attribute
declaration:

type <enumeration_type> is (<enum_lit1>, <enum_lit2>, ... <enum_litN>);

attribute ENUM_ENCODING: STRING; -- Attribute declaration

The attribute specification defines the encoding for the enumeration literals.
attribute ENUM_ENCODING of <enumeration_type>: type is
"[<space(s)>]<token1><space(s)><token2><space(s)>...<tokenN>[<space(s)>]";
-- Attribute specification

Token <token1> specifies the encoding for <enum_lit1>, <token2> specifies the encoding for <enum_lit2>, and so
on.

This attribute shall only decorate an enumeration type.

Note -- Use of this attribute may lead to simulation mismatches, e.g. with use of relational operators.

Example:

-- Example shows ENUM_ENCODING used to describe one-hot encoding:

attribute ENUM_ENCODING: string;
type COLOR is (RED, GREEN, BLUE, YELLOW, ORANGE);

attribute ENUM_ENCODING of COLOR: type is "10000 01000 00100 00010 00001";

-- Enumeration literal RED is encoded with the first value 10000,
-- GREEN is encoded with the value 01000, and so on.

User-defined attribute declarations and their specifications shall be ignored.

7.2 Metacomments

Two metacomments provide for conditional synthesis control. They shall be:

a) -- RTL_SYNTHESIS OFF

b) -- RTL_SYNTHESIS ON

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

21

A synthesis tool shall ignore any VHDL code after the “RTL_SYNTHESIS OFF” directive and before any
subsequent “RTL_SYNTHESIS ON” directive.

Metacomments differing only in the use of corresponding uppercase and lowercase letters shall be considered the
same.

The source code as a whole, including ignored constructs, shall conform to IEEE Std 1076-1993. The source code
exclusive of constructs ignored because of the metacomments, shall be compliant to the terms of this standard.

Note 1 -- Care should be taken when using these metacomments to ensure that synthesis behavior accurately reflects
simulation behavior. Use of these metacomments may lead to simulation mismatches.

Note 2 -- The interpretation of comments other than RTL_SYNTHESIS OFF and RTL_SYNTHESIS ON by a
synthesis tool is not compliant with this standard.

8. Syntax

8.1 Design entities and configurations

8.1.1 Entity declarations
entity_declaration ::=
 entity identifier is
 entity_header
 entity_declarative_part
[begin
 entity_statement_part]
 end [entity] [entity_simple_name] ;

Supported:

• entity_declaration

Ignored:

• entity_statement_part

Not supported:

• entity_declarative_part

• Reserved word entity after reserved word end

Example:

library IEEE;
use IEEE.std_Logic_1164.all;

entity E is
generic(DEPTH : Integer := 8);
 port (CLOCK : in std_logic;

RESET : in std_logic;
 A : in std_logic_vector(7 downto 0);

B : inout std_logic_vector(7 downto 0);
C : out std_logic_vector(7 downto 0));

end E;

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

22

8.1.1.1 Entity header

entity_header ::=
[formal_generic_clause]
[formal_port_clause]

generic_clause ::= generic(generic_list);

port_clause ::= port(port_list);

Supported:

• entity_header

• generic_clause

• port_clause

a) Generics
generic_list ::= generic_interface_list

Types allowed in the generic interface list of the entity_header shall be those described in 8.4.3.2.

Supported:

• generic_list

b) Ports
port_list ::= port_interface_list

Supported:

• port_list

Ignored:

• Initial values in port_list

8.1.1.2 Entity declarative part
entity_declarative_part ::=
 { entity_declarative_item }

entity_declarative_item ::
subprogram_declaration
| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| signal_declaration
| shared_variable_declaration
| file_declaration
| alias_declaration
| attribute_declaration
| attribute_specification
| disconnection_specification
| use_clause
| group_template_declaration
| group_declaration

Not supported:

• entity_declarative_part

• entity_declarative_item

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

23

8.1.1.3 Entity statement part
entity_statement_part ::=
{ entity_statement }

entity_statement ::=
concurrent_assertion_statement
| passive_concurrent_procedure_call
| passive_process_statement

Ignored:

• entity_statement_part

• entity_statement

Note -- The entity statement part describes passive behavior for simulation monitoring purposes. It cannot drive
signals in the architecture. It, therefore, has no effect on the behavior of the architecture.

8.1.2 Architecture bodies

architecture_body ::=
architecture identifier of entity_name is
architecture_declarative_part
 begin
 [architecture_statement_part]
 end [architecture] [architecture_simple_name] ;

Supported:

• architecture_body

• Multiple architectures corresponding to a given entity declaration

Not supported:

• Global signal interactions between architectures

• Reserved word architecture after reserved word end

8.1.2.1 Architecture declarative part
architecture_declarative_part ::=
{ block_declarative_item }

block_declarative_item ::=
 subprogram_declaration
 | subprogram_body
 | type_declaration
 | subtype_declaration
 | constant_declaration
 | signal_declaration
 | shared_variable_declaration
 | file_declaration
 | alias_declaration
 | component_declaration
 | attribute_declaration
 | attribute_specification
 | configuration_specification
 | disconnection_specification
| use_clause

 | group_template_declaration
 | group_declaration

Supported:

• architecture_declarative_part

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

24

• block_declarative_item

Ignored:

• file_declaration

• alias_declaration

• configuration_specification

• disconnection_specification

• User-defined attribute declarations and their specifications, except as described in 7.1.

Not supported:

• shared_variable_declaration

• group_template_declaration

• group_declaration

A use clause shall only reference the selected name of a package (which may in turn reference all, or a particular
item_name within the package).

Attribute declarations and attribute specifications will be supported only for the synthesis-specific attributes
described in Section 7.1. All other attribute declarations and attribute specifications shall be ignored.

8.1.2.2 Architecture statement part

architecture_statement_part ::=
 { concurrent_statement }

Supported:

• architecture_statement_part

As defined in 8.9 Concurrent statements.

8.1.3 Configuration declaration

configuration_declaration ::=
 configuration identifier of entity_name is
 configuration_declarative_part
 block_configuration
 end [configuration] [configuration_simple_name];

configuration_declarative_part ::=
 { configuration_declarative_item }

configuration_declarative_item ::=
 use_clause
 | attribute_specification
 | group_declaration

Supported:

• configuration_declaration

Not supported:

• configuration_declarative_part

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

25

• configuration_declarative_item

• Reserved word configuration after reserved word end

Configuration declaration shall only be supported to the extent of specifying the architecture to be associated with the
top level entity of a synthesized design hierarchy.

8.1.3.1 Block configuration
block_configuration ::=
 for block_specification
 { use_clause }
 { configuration_item }
 end for ;

block_specification ::=
 architecture_name
 | block_statement_label
 | generate_statement_label [(index_specification)]

index_specification ::=
 discrete_range
 | static_expresion

configuration_item ::=
 block_configuration
 | component_configuration

Supported:

• block_configuration

• block_specification

Not supported:

• use_clause

• index_specification

• configuration_item

• block_statement_label

• generate_statement_label

Use clause shall not be supported in this context.

Block specification shall only be an architecture name.

Configuration declaration shall only be used to select the architecture to be used with the top level entity.

8.1.3.2 Component configuration
component_configuration ::=
 for component_specification
 [binding_indication ;]
 [block_configuration]
 end for ;

Not supported:

• component_configuration

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

26

8.2 Subprograms and packages

8.2.1 Subprogram declarations

subprogram_declaration ::=
 subprogram_specification ;

subprogram_specification ::=
 procedure designator [(formal_parameter_list)]
 | [pure | impure] function designator [(formal_parameter_list)]
 return type_mark

designator ::= identifier | operator_symbol

operator_symbol ::= string_literal

Supported:

• subprogram_declaration

• subprogram_specification

• designator

• operator_symbol

Not supported:

• reserved words pure and impure

8.2.1.1 Formal parameters

formal_parameter_list ::= parameter_interface_list

Supported:

• formal_parameter_list

A subprogram shall not assign to an element or a slice of an unconstrained out parameter unless the corresponding
actual parameter in each call of the subprogram is an identifier.

a) Constant and variable parameters

Constant and variable parameters shall be supported.

b) Signal parameters

Signal parameters shall be supported.

c) File parameters

File parameters shall not be supported.

8.2.2 Subprogram bodies

subprogram_body ::=
 subprogram_specification is
 subprogram_declarative_part
 begin
 [subprogram_statement_part]
 end [subprogram_kind] [designator] ;

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

27

subprogram_declarative_part ::=
 { subprogram_declarative_item }

subprogram_declarative_item ::=
 subprogram_declaration
 | subprogram_body
 | type_declaration
 | subtype_declaration
 | constant_declaration
 | variable_declaration
 | file_declaration
 | alias_declaration
 | attribute_declaration
 | attribute_specification
 | use_clause
 | group_template_declaration
 | group_declaration

subprogram_statement_part ::=
 { sequential_statement }

subprogram_kind ::= procedure | function

Supported:

• subprogram_body

• subprogram_specification

• subprogram_declarative_part

• subprogram_declarative_item

• subprogram_statement_part

Ignored:

• file_declaration

• alias_declaration

Not supported:

• subprogram_kind

• group_template_declaration

• group_declaration

A use clause shall only reference the selected name of a package (which may in turn reference all, or a particular
item_name within the package).

Attribute declarations and attribute specifications will be supported only for the synthesis-specific attributes
described in Section 7.1. All other attribute declarations and attribute specifications shall be ignored.

Subprogram recursion shall be supported when the number of recursions is bounded by a static value.

A subprogram statement part shall not include a wait statement.

8.2.3 Subprogram overloading

8.2.3.1 Operator overloading

Operator overloading shall be supported.

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

28

a) Signatures

Signatures shall not be supported.

Note -- In the presence of a user-defined function representing an operator (i.e. a function defined outside any of the
standard packages named in Section 4), the RTL synthesis tool must produce logic matching the functionality of the
user-defined function.

8.2.4 Resolution functions

The resolution function RESOLVED is supported in subtype STD_LOGIC. All other resolution functions shall be
ignored.

8.2.5 Package declarations

package_declaration ::=
 package identifier is
 package_declarative_part
 end [package] [package_simple_name] ;

package_declarative_part ::=
 { package_declarative_item }

package_declarative_item ::=
 subprogram_declaration
 | type_declaration
 | subtype_declaration
 | constant_declaration
 | signal_declaration
 | shared_variable_declaration
 | file_declaration
 | alias_declaration
 | component_declaration
 | attribute_declaration
 | attribute_specification
 | disconnection_specification
 | use_clause
 | group_template_declaration
 | group_declaration

Supported:

• package_declaration

• package_declarative_part

• package_declarative_item

Ignored:

• file_declaration

• alias_declaration

• disconnection_specification

• User-defined attribute declarations and their specifications, except as described in 7.1.

Not supported:

• Reserved word package after reserved word end

• shared_variable_declaration

• group_template_declaration

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

29

• group_declaration

Signal declarations shall have an initial value expression.

Furthermore, a signal declared in a package shall have no sources. A constant declaration must include the initial
value expression, that is, deferred constants are not supported.

A use clause shall only reference the selected name of a package (which may in turn reference all, or a particular
item_name within the package).

Attribute declarations and attribute specifications will be supported only for the synthesis-specific attributes
described in Section 7.1. All other attribute declarations and attribute specifications shall be ignored.

8.2.6 Package bodies

package_body ::=
 package body package_simple_name is
 package_body_declarative_part
 end [package body] [package_simple_name] ;

package_body_declarative_part ::=
 { package_body_declarative_item }

package_body_declarative_item ::=
 subprogram_declaration
 | subprogram_body
 | type_declaration
 | subtype_declaration
 | constant_declaration
 | shared_variable_declaration
 | file_declaration
 | alias_declaration
 | use_clause
 | group_template_declaration
 | group_declaration

Supported:

• package_body

• package_body_declarative_part

• package_body_declarative_item

Ignored:

• alias_declaration

• file_declaration

Not supported:

• shared_variable_declaration

• group_template_declaration

• group_declaration

• Reserved words package body after reserved word end

A use clause shall only reference the selected name of a package (which may in turn reference all, or a particular
item_name within the package).

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

30

8.3 Types

8.3.1 Scalar types

scalar_type_definition ::=
 enumeration_type_definition
 | integer_type_definition
 | physical_type_definition
 | floating_type_definition

range_constraint ::= range range

range ::=
 range_attribute_name
 | simple_expression direction simple_expression

direction ::= to | downto

Supported:

• scalar_type_definition

• range_constraint

• range

• direction

Ignored:

• physical_type_definition

• floating_type_definition

Null ranges shall not be supported.

8.3.1.1 Enumeration types

enumeration_type_definition ::=
 (enumeration_literal { , enumeration_literal })

enumeration_literal ::= identifier | character_literal

Supported:

• enumeration_type_definition

• enumeration_literal

Elements of the following enumeration types (and their subtypes) shall be mapped to single bits as specified by IEEE
Std 1076.3-1997:

a) BIT and BOOLEAN

b) STD_ULOGIC

The synthesis tool may select a default mapping for elements of other enumeration types. The user may override the
default mapping by means of the ENUM_ENCODING attribute (see 7.1.1).

a) Predefined enumeration types

Supported:

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

31

• CHARACTER

Ignored:

• SEVERITY_LEVEL

Not supported:

• FILE_OPEN_KIND

• FILE_OPEN_STATUS

8.3.1.2 Integer types

integer_type_definition ::= range_constraint

Supported:

• integer_type_definition

It is recommended that a synthesis tool should convert a signal or variable that has an integer subtype indication to a
corresponding vector of bits. If the range contains no negative values, the object should have an unsigned binary
representation. If the range contains one or more negative values, the object should have a twos-complement
implementation. The vector should have a width that is capable of representing all possible values in the range
specified for the integer type definition. The synthesis tool should support integer types and positive, negative and
unconstrained (universal) integers whose bounds lie within the range -2,147,483,648 to +2,147,483,647 inclusive (the
range that successfully maps 32-bit twos-complement numbers).

Subtypes NATURAL and POSITIVE are supported.

Note -- Integer ranges may be synthesized as if the zero value is included. For example "INTEGER range 9 to 10"
may be synthesized using an equivalent vector length of 4 bits, just as if it had been defined with a subtype indication
of "INTEGER range 0 to 15".

8.3.1.3 Physical types

physical_type_definition ::=
 range_constraint
 units
 primary_unit_declaration
 { secondary_unit_declaration }
 end units [physical_type_simple_name]

primary_unit_declaration ::= identifier ;

secondary_unit_declaration ::= identifier = physical_literal ;

physical_literal ::= [abstract_literal] unit_name

Ignored:

• physical_type_definition

• physical_literal

Physical objects and literals other than the predefined physical type TIME shall not be supported.

Declarations of objects of type TIME shall be ignored. References to objects and literals of type TIME may occur
only within the time_expression following the reserved word after or the timeout_clause of a wait statement, and
shall be ignored.

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

32

8.3.1.4 Floating point types

floating_type_definition ::= range_constraint

Ignored:

• floating_type_definition

Floating point type declarations shall be ignored. Reference to objects and literals of a floating point type may occur
only within ignored constructs, for example, after the after clause.

8.3.2 Composite types

composite_type_definition ::=
 array_type_definition
 | record_type_definition

Supported:

• composite_type_definition

8.3.2.1 Array types

array_type_definition ::=
 unconstrained_array_definition
 | constrained_array_definition

unconstrained_array_definition ::=
 array (index_subtype_definition { , index_subtype_definition })
 of element_subtype_indication

constrained_array_definition ::=
 array index_constraint of element_subtype_indication

index_subtype_definition ::= type_mark range <>

index_constraint ::= (discrete_range { , discrete_range })

discrete_range ::= discrete_subtype_indication | range

range ::= range_attribute_name |
 simple_expression direction simple_expression

Supported:

• array_type_definition

• unconstrained_array_definition

• constrained_array_definition

• index_subtype_definition

• index_constraint

• discrete_range

The index constraint shall contain exactly one discrete range. The bounds of the discrete range shall be specified
directly or indirectly as static values belonging to an integer type. The element subtype indication shall denote either
a subtype of a scalar (integer or enumeration) type or a one dimensional vector of an enumeration type whose
elements denote single bits.

Null ranges shall not be supported.

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

33

If a discrete range is specified using a discrete subtype indication, the discrete subtype indication shall name a
subtype of an integer type.

In an unconstrained array definition, exactly one index subtype definition shall be supported.

A range shall comprise integer values.

a) Index constraints and discrete ranges

These shall be supported.

b) Predefined array types

Predefined array types shall be supported.

8.3.2.2 Record types

record_type_definition ::=
 record
 element_declaration
 { element_declaration }
 end record [record_type_simple_name]

element_declaration ::= identifier_list : element_subtype_definition ;

identifier_list ::= identifier { , identifier }

element_subtype_definition ::= subtype_indication

Supported:

• record_type_definition

• element_declaration

• identifier_list

• element_subtype_definition

8.3.3 Access types

access_type_definition ::= access subtype_indication

Ignored:

• access_type_definition

The use of access types shall not be supported.

8.3.3.1 Incomplete type declarations

incomplete_type_declaration ::= type identifier ;

Ignored:

• incomplete_type_declaration

8.3.3.2 Allocation and deallocation of objects

Allocation and deallocation shall not be supported.

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

34

8.3.4 File types

file_type_definition ::= file of type_mark

Ignored:

• file_type_definition

Use of file objects (objects declared as belonging to a file type) shall not be supported.

8.3.4.1 File operations

Not Supported:

• File operations

8.4 Declarations
declaration ::=
 type_declaration
 | subtype_declaration
 | object_declaration
 | interface_declaration
 | alias_declaration
 | attribute_declaration
 | component_declaration
 | group_template_declaration
 | group_declaration
 | entity_declaration
 | configuration_declaration
 | subprogram_declaration
 | package_declaration

Supported:

• declaration

Ignored:

• alias_declaration

Not supported:

• group_template_declaration

• group_declaration

Attribute declarations and attribute specifications will be supported only for the synthesis-specific attributes
described in Section 7.1. All other attribute declarations and attribute specifications shall be ignored.

8.4.1 Type declarations

type_declaration ::=
 full_type_declaration
 | incomplete_type_declaration

full_type_declaration ::=
 type identifier is type_definition ;

type_definition ::=
 scalar_type_definition
 | composite_type_definition
 | access_type_definition
 | file_type_definition

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

35

Supported:

• type_declaration

• full_type_declaration

• type_definition

Ignored:

• incomplete_type_declaration

• access_type_definition

• file_type_definition

Full type declarations containing access type definition or file type definition shall be ignored.

8.4.2 Subtype declarations

subtype_declaration ::=
 subtype identifier is subtype_indication ;

subtype_indication ::=
 [resolution_function_name] type_mark [constraint]

type_mark ::=
 type_name
 | subtype_name

constraint ::=
 range_constraint
 | index_constraint

Supported:

• subtype_declaration

• subtype_indication

• type_mark

• constraint

Ignored:

• User-defined resolution functions

8.4.3 Objects

8.4.3.1 Object declarations

object_declaration ::=
 constant_declaration
 | signal_declaration
 | variable_declaration
 | file_declaration

Supported:

• object_declaration

Ignored:

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

36

• file_declaration

a) Constant declarations
constant_declaration ::=
 constant identifier_list : subtype_indication := expression ;

Supported:

• constant_declaration

Deferred constant declaration shall not be supported. That is, the expression shall be present in the constant
declaration.

b) Signal declarations
signal_declaration ::=
 signal identifier_list : subtype_indication [signal_kind] [:= expression] ;

signal_kind ::= register | bus

Supported:

• signal_declaration

Ignored:

• expression

Not supported:

• signal_kind

The initial value expression shall be ignored unless the declaration is in a package, where it shall have an initial value
expression.

The subtype indication shall be a globally static type. An assignment to a signal declared in a package shall not be
supported.

c) Variable declarations
variable_declaration ::=
 [shared] variable identifier_list : subtype_indication [:= expression] ;

Supported:

• variable_declaration

Ignored:

• expression

Not supported:

• Reserved word shared

The reserved word shared shall not be supported. The initial value expression shall be ignored. The subtype
indication shall be a globally static type.

The use of access objects shall not be supported.

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

37

d) File declarations
file_declaration ::=
 file identifier_list : subtype_indication [file_open_information] ;

file_open_information ::=
 [open file_open_kind_expression] is file_logical_name

file_logical_name ::= string_expression

Ignored:

• file_declaration

The use of file objects shall not be supported.

8.4.3.2 Interface declarations

interface_declaration ::=
 interface_constant_declaration
 | interface_signal_declaration
 | interface_variable_declaration
 | interface_file_declaration

interface_constant_declaration ::=
 [constant] identifier_list : [in] subtype_indication [:= static_expression]

interface_signal_declaration ::=
 [signal] identifier_list : [mode] subtype_indication [bus]
 [:= static_expression]

interface_variable_declaration ::=
 [variable] identifier_list : [mode] subtype_indication
 [:= static_expression]

interface_file_declaration ::=
 file identifier_list : subtype_indication

mode ::= in | out | inout | buffer | linkage

Supported:

• interface_declaration

• interface_constant_declaration

• interface_signal_declaration

• interface_variable_declaration

Ignored:

• static_expression (interface signal declarations and interface variable declarations)

Not Supported:

• interface_file_declaration

• Mode linkage

• Reserved word bus

Generic interface constant declarations shall have a subtype indication of an integer type or a subtype thereof.

The static expression shall be ignored in port interface lists and formal parameter lists except for interface constant
declarations that shall be supported.

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

38

a) Interface lists
interface_list ::=
 interface_element {; interface_element}

interface_element ::= interface_declaration

Supported:

• interface_list

• interface_element

b) Association lists
association_list ::=
 association_element {, association_element}

association_element ::=
 [formal_part =>] actual_part

formal_part ::=
 formal_designator
 | function_name(formal_designator)
 | type_mark(formal_designator)

formal_designator ::=
 generic_name
 | port_name
 | parameter_name

actual_part ::=
 actual_designator
 | function_name(actual_designator)
 | type_mark(actual_designator)

actual_designator ::=
 expression
 | signal_name
 | variable_name
 | file_name
 | open

Supported:

• association_list

• association_element

• formal_part

• formal_designator

• actual_part

• actual_designator

Not supported:

• function_name

• type_mark

• file_name

The formal part may be only a formal designator and the actual part shall only be an actual designator.

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

39

8.4.3.3 Alias declarations

alias_declaration ::=
 alias alias_designator [: subtype_indication] is name [signature];

alias_designator ::= identifier | character_literal | operator_symbol

Ignored:

• alias_declaration

• alias_designator

Not supported:

• signature

Use of aliases shall not be supported.

8.4.4 Attribute declarations

attribute_declaration ::=
 attribute identifier : type_mark ;

Ignored:

• attribute_declaration

Attribute declarations and attribute specifications will be supported only for the synthesis-specific attributes
described in Section 7.1. All other attribute declarations and attribute specifications shall be ignored.

8.4.5 Component declarations

component_declaration ::=
 component identifier [is]
 [local_generic_clause]
 [local_port_clause]
 end component [component_simple_name] ;

Supported:

• component_declaration

Not supported:

• reserved word is

• component_simple_name

8.4.6 Group template declarations

group_template_declaration ::=
 group identifier is (entity_class_entry_list) ;

entity_class_entry_list ::=
 entity_class_entry {, entity_class_entry }

entity_class_entry ::= entity_class [<>]

Not supported:

• group_template_declaration

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

40

• entity_class_entry_list

• entity_class_entry

8.4.7 Group declarations

group_declaration ::=
 group identifier : group_template_name(group_consituent_list);

group_constituent_list ::= group_constituent {, group_constituent }

group_constituent ::= name | character_literal

Not supported:

• group_declaration

• group_constituent_list

• group_constituent

8.5 Specifications

8.5.1 Attribute specification

attribute_specification ::=
 attribute attribute_designator of entity_specification is expression;

entity_specification ::=
 entity_name_list : entity_class

entity_class ::=
 entity | architecture | configuration
| procedure | function| package
| type | subtype | constant
| signal | variable| component
| label | literal | units
| group | file

entity_name_list ::=
 entity_designator {, entity_designator}
 | others
 | all

entity_designator ::= entity_tag [signature]

entity_tag ::= simple_name | character_literal | operator_symbol

Supported:

• attribute_specification

• entity_specification

• entity_class

• entity_name_list

• entity_designator

• entity_tag

Ignored:

• User-defined attribute declarations

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

41

Not supported:

• signature

• Entity class group and file

• Use of user-defined attributes

• Reserved words other and all in entity_name_list

Attribute declarations and attribute specifications will be supported only for the synthesis-specific attributes
described in Section 7.1. All other attribute declarations and attribute specifications shall be ignored.

8.5.2 Configuration specification

configuration_specification ::=
 for component_specification binding_indication;

component_specification ::=
 instantiation_list : component_name

instantiation_list ::=
 instantiation_label {, instantiation_label}
 | others
 | all

Ignored:

• configuration_specification

• component_specification

• instantiation_list

8.5.2.1 Binding indication

binding_indication ::=
 [use entity_aspect]
 [generic_map_aspect]
 [port_map_aspect]

Ignored:

• binding_indication

Not Supported:

• generic_map_aspect

• port_map_aspect

a) Entity aspect
entity_aspect ::=
 entity entity_name [(architecture_identifier)]
| configuration configuration_name
| open

Not Supported:

• entity_aspect

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

42

b) Generic map and port map aspects
generic_map_aspect ::=
 generic map (generic_association_list)

port_map_aspect ::=
 port map (port_association_list)

8.5.2.2 Default binding indication

Default binding shall be supported.

8.5.3 Disconnection specification

Disconnection specifications shall be ignored.

8.6 Names

8.6.1 Names

name ::=
 simple_name
 | operator_symbol
 | selected_name
 | indexed_name
 | slice_name
 | attribute_name

prefix ::=
 name
 | function_call

Supported:

• name

• prefix

8.6.2 Simple names

simple_name ::= identifier:

Supported:

• simple_name

8.6.3 Selected names

selected_name ::= prefix.suffix

suffix ::=
 simple_name
 | character_literal
 | operator_symbol
 | all

Supported:

• selected_name

• suffix

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

43

8.6.4 Indexed names

indexed_name ::= prefix (expression {, expression })

Supported:

• indexed_name

Using an indexed name of an unconstrained out parameter in a procedure shall not be supported.

Only a single expression shall be permitted (no multidimensional objects).

8.6.5 Slice names

slice_name ::= prefix (discrete_range)

Supported:

• slice_name

Using a slice name of an unconstrained out parameter in a procedure shall not be supported.

Null slices shall not be supported.

For a discrete range that appears as part of a slice name, the bounds of the discrete range shall be specified directly or
indirectly as static values belonging to an integer type.

8.6.6 Attribute names

attribute_name ::=
 prefix [signature]’attribute_designator [(expression)]

attribute_designator ::= attribute_simple_name

Supported attribute designators:

• 'BASE

• 'LEFT

• 'RIGHT

• 'HIGH

• 'LOW

• 'RANGE

• 'REVERSE_RANGE

• 'LENGTH

• 'EVENT

• 'STABLE

Supported:

• attribute_name

• attribute_designator

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

44

Not supported:

• signature

• expression

Attributes 'EVENT and 'STABLE shall only be used as specified in 6.1.

8.7 Expressions

8.7.1 Expressions

expression ::=
 relation { and relation }
 | relation { or relation }
 | relation { xor relation }
 | relation [nand relation]
 | relation [nor relation]
 | relation { xnor relation }

relation ::=
 shift_expression [relational_operator shift_expression]

shift_expression ::=
 simple_expression [shift_operator simple_expression]

simple_expression ::=
 [sign] term { adding_operator term }

term ::=
 factor { multiplying_operator factor }

factor ::=
 primary [** primary]
 | abs primary
 | not primary

primary ::=
 name
 | literal
 | aggregate
 | function_call
 | qualified_expression
 | type_conversion
 | allocator
 | (expression)

Supported:

• expression

• relation

• shift_expression

• simple_expression

• term

• factor

• primary

Not supported:

• xnor operator

• All shift operators

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

45

• allocator in a primary

8.7.2 Operators

logical_operator ::= and | or | nand | nor | xor | xnor
relational_operator ::= = | /= | < | <= | > | >=
shift_operator ::= sll | srl | sla | sra | rol | ror
adding_operator ::= + | - | &
sign ::= + | -
multiplying_operator ::= * | / | mod | rem
miscellaneous_operator ::= ** | abs | not

Supported:

• logical_operator

• relational_operator

• adding_operator

• sign

• multiplying_operator

• miscellaneous_operator

Not supported:

• xnor operator

• shift_operator

8.7.2.1 Logical operators

Not supported:

• xnor operator

8.7.2.2 Relational operators

No restriction.

Note -- Using relational operators for enumerated type that has an explicit encoding specified via the
ENUM_ENCODING attribute may lead to simulation mismatches (see 7.1.1).

8.7.2.3 Shift operators

Supported:

• All SHIFT_LEFT and SHIFT_RIGHT functions defined in packages NUMERIC_BIT and
NUMERIC_STD as part of IEEE Std 1076.3-1997

Not supported:

• All shift operators

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

46

8.7.2.4 Adding operators

No restriction.

8.7.2.5 Sign operators

No restriction.

8.7.2.6 Multiplying operators

Supported:

• * (multiply) operator

• / (division), mod, and rem operators

• all multiplying operators defined in IEEE Std 1076.3-1997

The / (division), mod, and rem operators shall be supported only when both operands are static or when the right
operand is a static power of 2.

8.7.2.7 Miscellaneous operators

Supported:

• ** (exponentiation) operator

• abs operator

The ** (exponentiation) operator shall be supported only when both operands are static or when the left operand has
the static value 2.

8.7.3 Operands

8.7.3.1 Literals

literal ::=
 numeric_literal
 | enumeration_literal
 | string_literal
 | bit_string_literal
| null

numeric_literal ::=
 abstract_literal
 | physical_literal

Supported:

• literal

• numeric_literal

Not supported:

• null

References to objects and literals of type TIME may occur only within the time_expression following the reserved
word after or the timeout_clause of a wait statement, and shall be ignored.

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

47

8.7.3.2 Aggregates

aggregate ::=
 (element_association {, element_association})

element_association ::=
 [choices =>] expression

choices ::= choice { | choice }

choice ::=
 simple_expression
 | discrete_range
 | element_simple_name
 | others

Supported:

• aggregate

• element_association

• choices

• choice

• Use of a type as a choice

Example:
subtype Src_Typ is Integer range 7 downto 4;
subtype Dest_Typ is Integer range 3 downto 0;
-- Constant definition with aggregates
constant Data_c : Std_Logic_Vector(7 downto 0) := (Src_Typ => '1', Dest_Typ => '0');

a) Record aggregates

Not supported:

• record aggregates

b) Array aggregates

No restriction.

8.7.3.3 Function calls

function_call ::=
 function_name [(actual_parameter_part)]

actual_parameter_part ::= parameter_association_list

Supported:

• function_call

• actual_parameter_part

Restrictions exist for the actual parameter part. These restrictions are described in 8.4.3.2.

8.7.3.4 Qualified expressions

qualified_expression ::=
 type_mark’(expression)

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

48

 | type_mark’aggregate

Supported:

• qualified_expression

8.7.3.5 Type conversions

type_conversion ::= type_mark(expression)

Supported:

• type_conversion

8.7.3.6 Allocators

allocator ::=
 new subtype_indication
 | new qualified_expression

Not supported:

• allocator

8.7.4 Static expressions

8.7.4.1 Locally static primaries

Locally static primaries shall be supported.

8.7.4.2 Globally static primaries

Globally static primaries shall be supported.

8.7.5 Universal expressions

Floating-point expressions shall not be supported. Precision shall be limited to 32 bits.

8.8 Sequential statements
sequence_of_statements ::=
 { sequential_statement }

sequential_statement ::=
 wait_statement
 | assertion_statement
 | report_statement
 | signal_assignment_statement
 | variable_assignment
 | procedure_call_statement
 | if_statement
 | case_statement
 | loop_statement
 | next_statement
 | exit_statement
 | return_statement
 | null_statement

Supported:

• sequence_of_statements

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

49

• sequential_statement

8.8.1 Wait statement

wait_statement ::=
 [label:] wait [sensitivity_clause] [condition_clause] [timeout_clause] ;

sensitivity_clause ::= on sensitivity_list

sensitivity_list ::= signal_name {, signal_name}

condition_clause ::= until condition

condition ::= boolean_expression

timeout_clause ::= for time_expression

Supported:

• wait_statement

• sensitivity_list

• condition_clause

• condition

Ignored:

• timeout_clause

Not Supported:

• label

• sensitivity_clause

Only one wait until statement shall be allowed per process statement and it shall be the first statement in the process.

Use of timeout clause may lead to simulation mismatches.

8.8.2 Assertion statement

assertion_statement ::= [label:] assertion ;

assertion ::=
 assert condition
 [report expression]
 [severity expression]

Ignored:

• assertion_statement

• assertion

Not supported:

• label

8.8.3 Report statement

report_statement ::=
 [label:] report expression

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

50

 [severity expression] ;

Not Supported:

• report_statement

8.8.4 Signal assignment statement

signal_assignment_statement ::=
 [label:] target <= [delay_mechanism] waveform ;

delay_mechanism ::=
 transport
 | [reject time_expression] inertial

target ::=
 name
 | aggregate

waveform ::=
 waveform_element {, waveform_element}
 | unaffected

Supported:

• signal_assignment_statement

• target

• waveform

Ignored:

• delay_mechanism

Not supported:

• label

• Reserved words reject, inertial and unaffected

• time_expression

• Multiple waveform_elements

An assignment to a signal declared in a package shall not be supported.

8.8.4.1 Updating a projected output waveform

waveform_element ::=
 value_expression [after time_expression]
| null [after time_expression]

Supported:

• waveform_element

Ignored:

• Time expression after reserved word after

Not supported:

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

51

• null waveform elements

8.8.5 Variable assignment statement

variable_assignment_statement ::=
 [label:] target := expression ;

Supported:

• variable_assignment_statement

Not supported:

• label

8.8.5.1 Array variable assignments

Array variable assignment shall be supported.

8.8.6 Procedure call statement

procedure_call_statement ::= [label:] procedure_call ;

procedure_call ::= procedure_name [(actual_parameter_part)]

Supported:

• procedure_call_statement

• procedure_call

Not supported:

• label

Restrictions for the actual parameter part are discribed in 8.4.3.2 b).

8.8.7 If statement

if_statement ::=
 [if_label:]
 if condition then
 sequence_of_statements
 { elsif condition then
 sequence_of_statements }
 [else
 sequence_of_statements]
 end if [if_label] ;

Supported:

• if_statement

Not supported:

• if_label

If a signal or variable is assigned under some values of the conditional expressions in the if statement but not for all
values, storage elements may result; see 6.2.

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

52

8.8.8 Case statement

case_statement ::=
 [case_label:]
 case expression is
 case_statement_alternative
 { case_statement_alternative }
 end case [case_label] ;

case_statement_alternative ::=
 when choices =>
 sequence_of_statements

Supported:

• case_statement

• case_statement_alternative

Not supported:

• label

If a signal or variable is assigned values in some branches of a case statement but not in all, level-sensitive storage
elements may result; see 6.2. This is true only if the assignment does not occur under the control of a clock edge.

If a metalogical value occurs as a choice, or as an element of a choice, in a case statement that is interpreted by a
synthesis tool, the synthesis tool shall interpret the choice as one that may never occur. That is, the interpretation that
is generated shall not be required to contain any constructs corresponding to the presence or absence of the sequence
of statements associated with the choice.

Note 1 -- If the type of the case expression includes metalogical values, and if not all the metalogical values are
included among the case choices, then the case statement must include an others choice to cover the missing
metalogical choice values (IEEE Std 1076-1993).

Note 2 -- A case choice (such as "1X1") that includes a metalogical value indicates a branch that can never be taken
by the synthesized circuit (IEEE Std 1076.3-1997).

8.8.9 Loop statement

loop_statement ::=
 [loop_label:]
 [iteration_scheme] loop
 sequence_of_statements
 end loop [loop_label] ;

iteration_scheme ::=
 while condition
 | for loop_parameter_specification

parameter_specification ::=
 identifier in discrete_range

discrete_range ::= discrete_subtype_indication | range

Supported:

• loop_statement

• iteration_scheme

• parameter_specification

• discrete_range

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

53

Not supported:

• while

The iteration scheme shall not be omitted.

For a discrete range that appears as part of a parameter specification, the bounds of the discrete range shall be
specified directly or indirectly as static values belonging to an integer type.

8.8.10 Next statement

next_statement ::=
 [label:] next [loop_label] [when condition] ;

Supported:

• next_statement

Not supported:

• label

8.8.11 Exit statement

exit_statement ::=
 [label:] exit [loop_label] [when condition] ;

Supported:

• exit_statement

Not supported:

• label

8.8.12 Return statement

return_statement ::=
 [label:] return [expression] ;

Supported:

• return_statement

Not supported:

• label

8.8.13 Null statement

null_statement ::=
 [label:] null ;

Supported:

• null_statement

Not supported:

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

54

• label

8.9 Concurrent statements
concurrent_statement ::=
 block_statement
 | process_statement
 | concurrent_procedure_call_statement
 | concurrent_assertion_statement
 | concurrent_signal_assignment_statement
 | component_instantiation_statement
 | generate_statement

Supported:

• concurrent_statement

8.9.1 Block statement

block_statement ::=
 block_label:
 block [(guard_expression)] [is]
 block_header
 block_declarative_part
 begin
 block_statement_part
 end block [block_label] ;

block_header ::=
 [generic_clause
 [generic_map_clause ;]]
 [port_clause
 [port_map_clause ;]]

block_declarative_part ::=
 { block_declarative_item }

block_statement_part ::=
 { concurrent_statement }

Supported:

• block_statement

• block_declarative_part

• block_statement_part

Not supported:

• block_header

• guard_expression

• Reserved word is

8.9.2 Process statement

process_statement ::=
 [process_label:]
 [postponed] process [(sensitivity_list)] [is]
 process_declarative_part
 begin
 process_statement_part
 end process [process_label] ;

process_declarative_part ::=
 { process_declarative_item }

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

55

process_declarative_item ::=
 subprogram_declaration
 | subprogram_body
 | type_declaration
 | subtype_declaration
 | constant_declaration
 | variable_declaration
 | file_declaration
 | alias_declaration
 | attribute_declaration
 | attribute_specification
 | use_clause
 | group_template_declaration
 | group_declaration

process_statement_part ::=
 { sequential_statement }

Supported:

• process_statement

• sensitivity_list

• process_declarative_part

• process_declarative_item

• process_statement_part

Ignored:

• file_declaration

• alias_declaration

• User-defined attribute declarations and their specifications

Not supported:

• Reserved words postponed and is

• group_template_declaration

• group_declaration

The sensitivity list must include those signals or elements of signals that are read by the process except for signals
read only under control of a clock edge, as described in section 6.

A use clause shall only reference the selected name of a package that may in turn reference all, or a particular
item_name within the package.

Attribute declarations and specifications as described in 7.1 shall be the only ones supported.

Use of file objects, access objects (variables of access type) and aliases in a process are not supported.

8.9.3 Concurrent procedure call statement

concurrent_procedure_call_statement ::=
 [label:] [postponed] procedure_call ;

Supported:

• concurrent_procedure_call_statement

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

56

Not supported:

• Reserved word postponed

8.9.4 Concurrent assertion statement

concurrent_assertion_statement ::=
 [label:] [postponed] assertion ;

Ignored:

• concurrent_assertion_statement

Not supported:

• Reserved word postponed

8.9.5 Concurrent signal assignment statement

concurrent_signal_assignment_statement ::=
 [label:] [postponed] conditional_signal_assignment
 | [label:] [postponed] selected_signal_assignment

options ::= [guarded] [delay_mechanism]

Supported:

• concurrent_signal_assignment_statement

Ignored:

• options

Not supported:

• Reserved words postponed and guarded

Any after clauses shall be ignored.

Multiple waveform elements shall not be supported.

The value unaffected shall not be supported

Edge specifications (<clock_edge> or <clock_level>) shall not be allowed in concurrent signal assignments.

Example:

architecture ARCH of ENT is
begin

 B(7) <= A(6);
 B(3 downto 0) <= A(7 downto 4);

 C <= not A;
end ARCH;

8.9.5.1 Conditional signal assignment

conditional_signal_assignment ::=
 target <= options conditional_waveforms ;

conditional_waveforms ::=

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

57

 { waveform when condition else }
 waveform [when condition]

Supported:

• conditional_signal_assignment

• conditional_waveforms

Ignored:

• options

Not supported:

• Last when condition

Conditional signal assignments that satisfy either of the following conditions shall not be supported:

a) The conditional waveforms contain a reference to one or more elements of the target signal.

b) The conditional waveforms contain an expression that represents a clock edge as defined by 6.1.2.

Example:

architecture ARCH of ENT is
begin
 C <= B when A(0) = '1' else

not B when A(1) = '1' else
"00000000" when A(2) = '1' and RESET = '1' else
(others => ('1'));

end ARCH;

8.9.5.2 Selected signal assignments

selected_signal_assignment ::=
 with expression select
 target <= options selected_waveforms ;

selected_waveforms ::=
 { waveform when choices , }
 waveform when choices

Supported:

• selected_signal_assignment

• selected_waveforms

Ignored:

• options

Selected signal assignments that satisfy either of the following conditions shall not be supported:

a) The selected waveforms contain a reference to one or more elements of the target signal.

b) The selected waveforms contain an expression that represents a clock edge as defined by 6.1.2.

Examples:

architecture A of E is

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

58

begin
with A select

C <= B when "00000000",
not B when "10101010",

(others => ('1')) when "11110001",
not A when others;

end A;

8.9.6 Component instantiation statement

component_instantiation_statement ::=
 instantiation_label:
 instantiated_unit
 [generic_map_aspect]
 [port_map_aspect] ;

instantiated_unit ::=
 [component] component_name
 | entity entity_name [(architecture_name)]
 | configuration configuration_name

Supported:

• component_instantiation_statement

• instantiated_unit

Not supported:

• entity and configuration forms of instantiated unit

• reserved word component

Restrictions exist for the generic map aspect and the port map aspect; these are described in 8.4.3.2.

Type conversions on a formal port shall not be supported.

8.9.6.1 Instantiation of a component

Component instantiation shall be supported.

8.9.6.2 Instantiation of a design entity

Not supported:

• Instantiation of a design entity

8.9.7 Generate statement

generate_statement ::=
 generate_label:
 generation_scheme generate
 [{ block_declarative_item }
 begin]
 { concurrent_statement }
 end generate [generate_label] ;

generation_scheme ::=
 for generate_parameter_specification
 | if condition

label ::= identifier

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

59

Supported:

• generate_statement

• generate_scheme

• label

Not supported:

• block_declarative_item (the declarative region)

• reserved word begin

The generate parameter specification shall be statically computable and of the form “identifier in range“
only.

8.10 Scope and visibility

8.10.1 Declarative region

Declarative regions shall be supported.

8.10.2 Scope of declarations

The scope of declarations shall be supported.

8.10.3 Visibility

Visibility rules shall be supported.

8.10.4 Use clause

use_clause ::=
 use selected_name {, selected_name} ;

Supported:

• use_clause

8.10.5 The context of overloaded resolution

The context of overloaded resolution shall be supported.

8.11 Design units and their analysis

8.11.1 Design units

design_file ::= design_unit { design_unit }

design_unit ::= context_clause library_unit

library_unit ::=
 primary_unit
 | secondary_unit

primary_unit ::=
 entity_declaration

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

60

 | configuration_declaration
 | package_declaration

secondary_unit ::=
 architecture_body
 | package_body

Supported:

• design_file

• design_unit

• library_unit

• primary_unit

• secondary_unit

8.11.2 Design libraries

library_clause ::= library logical_name_list ;

logical_name_list ::= logical_name {, logical_name}

logical_name ::= identifier

Supported:

• library_clause

• logical_name_list

• logical_name

8.11.3 Context clauses

context_clause ::= { context_item }

context_item ::=
 library_clause
 | use_clause

Supported:

• context_clause

• context_item

8.11.4 Order of analysis

The order of analysis shall be supported.

8.12 Elaboration

No constraints shall be put on elaboration for synthesis.

8.13 Lexical elements

Real literals are only allowed in after clauses.

Extended identifiers shall not be supported.

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

61

8.14 Predefined language environment

8.14.1 Predefined attributes

8.14.1.1 Attributes whose prefix is a type t

t'BASE

t'LEFT

t'RIGHT

t'HIGH

t'LOW

t'ASCENDING

t'IMAGE

t'VALUE(x)

t'POS(x)

t'VAL(x)

t'SUCC(x)

t'PRED(x)

t'LEFTOF(x)

t'RIGHTOF(x)

8.14.1.2 Attributes whose prefix is an array object a, or attributes of a constrained array subtype a

a'LEFT[(n)]

a'RIGHT[(n)]

a'HIGH[(n)]

a'LOW[(n)]

a'RANGE[(n)]

a'REVERSE_RANGE[(n)]

a'LENGTH[(n)]
a'ASCENDING[(n)]

8.14.1.3 Attributes whose prefix is a signal s

s'DELAYED[(t)]

s'STABLE[(t)]

s'QUIET

s'TRANSACTION

s'EVENT

s'ACTIVE

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

62

s'LAST_EVENT

s'LAST_ACTIVE

s'LAST_VALUE

s'DRIVING

s'DRIVING_VALUE

Attributes STABLE and EVENT may only be used as described in section 6.

8.14.1.4 Attributes whose prefix is a named object e

e'SIMPLE_NAME

e'INSTANCE_NAME

e'PATH_NAME

8.14.2 Package STANDARD

Functions in the package STANDARD shall be either supported or not supported as defined below:

Supported:

• Functions with arguments of type CHARACTER

• Functions with arguments of type STRING

• All functions whose arguments are only of type BOOLEAN

• All functions whose arguments are only of type BIT

• The following functions with arguments of type “universal integer” or of type INTEGER:

relational operator functions

“+”, “-”, “abs”, “*”

“/”, “mod”, and “rem” provided both operands are static or the second argument is a static
power of two

“**” provided both operands are static, or the first argument is a static value of two

• All functions with an argument of type BIT_VECTOR

Ignored:

• The attribute 'FOREIGN

Not supported:

• Functions with arguments of type SEVERITY_LEVEL

• The following functions with arguments of type “universal integer” or INTEGER:

“/”, “mod”, and “rem” when neither operand is static or the second argument is not a static
power of two

“**” when the first argument is not a static value of two, or when neither operand is static

• Functions with arguments of type “universal real” or of type REAL

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

63

• Functions with arguments of type TIME

• The function NOW

• Functions with arguments of type FILE_OPEN_KIND

• Functions with arguments of type FILE_OPEN_STATUS

8.14.3 Package TEXTIO

The subprograms defined in package TEXTIO shall not be supported.

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

64

(This page left blank intentionally)

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

65

Annex A: Syntax Summary (Informative)
This annex summarizes the VHDL syntax that is supported.

abstract_literal ::= decimal_literal | based_literal

access_type_definition ::= access subtype_indication

actual_designator ::=
 expression
 | signal_name
 | variable_name
 | file_name
 | open

actual_parameter_part ::= parameter_association_list

actual_part ::=
 actual_designator
 | function_name(actual_designator)
 | type_mark(actual_designator)

adding_operator ::= + | - | &

aggregate ::=
 (element_association {, element_association})

alias_declaration ::=
 alias alias_designator [: subtype_indication] is name [signature];

alias_designator ::= identifier | character_literal | operator_symbol

allocator ::=
 new subtype_indication
 | new qualified_expression

architecture_body ::=
 architecture identifier of entity_name is
 architecture_declarative_part
 begin
 architecture_statement_part]
 end [architecture] [architecture_simple_name] ;

architecture_declarative_part ::=
 { block_declarative_item }

architecture_statement_part ::=
 { concurrent_statement }

array_type_definition ::=
 unconstrained_array_definition
 | constrained_array_definition

assertion ::=
 assert condition
 [report expression]
 [severity expression]

assertion_statement ::= [label:] assertion ;

association_element ::=
 [formal_part =>] actual_part

association_list ::=
 association_element {, association_element}

attribute_declaration ::=
 attribute identifier : type_mark ;

attribute_designator ::= attribute_simple_name

attribute_name ::=
 prefix [signature]’attribute_designator [(expression)]

attribute_specification ::=
 attribute attribute_designator of entity_specification is expression;

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

66

base ::= integer

base_specifier ::= B | O | X

base_unit_declaration ::= identifier ;

based_integer ::=
 extended_digit { [underline] extended_digit }

based_literal ::=
 base # based_integer [. based_integer] # [exponent]

basic_character ::=
 basic_graphic_character | format_effector

basic_graphic_character ::=
 upper_case_letter | digit | special_character| space_character

basic_identifier ::=
 letter { [underline] letter_or_digit }

binding_indication ::=
 [use entity_aspect]
 [generic_map_aspect]
 [port_map_aspect]

bit_string_literal :: base_specifier “ [bit_value] “

bit_value ::= extended_digit { [underline] extended_digit }

block_configuration ::=
 for block_specification
 { use_clause }
 { configuration_item }
 end for ;

block_declarative_item ::=
 subprogram_declaration
 | subprogram_body
 | type_declaration
 | subtype_declaration
 | constant_declaration
 | signal_declaration
 | shared_variable_declaration
 | file_declaration
 | alias_declaration
 | component_declaration
 | attribute_declaration
 | attribute_specification
 | configuration_specification
 | disconnection_specification
 | use_clause
 | group_template_declaration
 | group_declaration

block_declarative_part ::=
 { block_declarative_item }

block_header ::=
 [generic_clause
 [generic_map_clause ;]]
 [port_clause
 [port_map_clause ;]]

block_specification ::=
 architecture_name
 | block_statement_label
 | generate_statement_label [(index_specification)]

block_statement ::=
 block_label:
 block [(guard_expression)] [is]
 block_header
 block_declarative_part
 begin
 block_statement_part
 end block [block_label] ;

block_statement_part ::=

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

67

 { concurrent_statement }

case_statement ::=
 [case_label:]
 case expression is
 case_statement_alternative
 { case_statement_alternative }
 end case [case_label] ;

case_statement_alternative ::=
 when choices =>
 sequence_of_statements

character_literal ::= ‘ graphic_character ‘

choice ::=
 simple_expression
 | discrete_range
 | element_simple_name
 | others

choices ::= choice { | choice }

component_configuration ::=
 for component_specification
 [binding_indication ;]
 [block_configuration]
 end for ;

component_declaration ::=
 component identifier [is]
 [local_generic_clause]
 [local_port_clause]
 end component [component_simple_name];

component_instantiation_statement ::=
 instantiation_label:
 instantiated_unit
 [generic_map_aspect]
 [port_map_aspect] ;

component_specification ::=
 instantiation_list : component_name

composite_type_definition ::=
 array_type_definition
 | record_type_definition

concurrent_assertion_statement ::=
 [label:] [postponed] assertion ;

concurrent_procedure_call_statement ::=
 [label:] [postponed] procedure_call ;

concurrent_signal_assignment_statement ::=
 [label:] [postponed] conditional_signal_assignment
 | [label:] [postponed] selected_signal_assignment

concurrent_statement ::=
 block_statement
 | process_statement
 | concurrent_procedure_call_statement
 | concurrent_assertion_statement
 | concurrent_signal_assignment_statement
 | component_instantiation_statement
 | generate_statement

condition ::= boolean_expression

condition_clause ::= until condition

conditional_signal_assignment ::=
 target <= options conditional_waveforms ;

conditional_waveforms ::=
 { waveform when condition else }
 waveform [when condition]

configuration_declaration ::=

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

68

 configuration identifier of entity_name is
 configuration_declarative_part
 block_configuration
 end [configuration] [configuration_simple_name];

configuration_declarative_item ::=
 use_clause
 | attribute_specification
 | group_declaration

configuration_declarative_part ::=
 { configuration_declarative_item }

configuration_item ::=
 block_configuration
 | component_configuration

configuration_specification ::=
 for component_specification binding_indication;

constant_declaration ::=
 constant identifier_list : subtype_indication := expression ;

constrained_array_definition ::=
 array index_constraint of element_subtype_indication

constraint ::=
 range_constraint
 | index_constraint

context_clause ::= { context_item }

context_item ::=
 library_clause
 | use_clause

decimal_literal ::= integer [. integer] [exponent]

declaration ::=
 type_declaration
 | subtype_declaration
 | object_declaration
 | interface_declaration
 | alias_declaration
 | attribute_declaration
 | component_declaration
 | group_template_declaration
 | group_declaration
 | entity_declaration
 | configuration_declaration
 | subprogram_declaration
 | package_declaration

delay_mechanism ::=
 transport
 | [reject time_expression] inertial

design_file ::= design_unit { design_unit }

design_unit ::= context_clause library_unit

designator ::= identifier | operator_symbol

direction ::= to | downto

disconnection_specification ::=
 disconnect guarded_signal_specification after time_expression ;

discrete_range ::= discrete_subtype_indication | range

element_association ::=
 [choices =>] expression

element_declaration ::= identifier_list : element_subtype_definition ;

element_subtype_definition ::= subtype_indication

entity_aspect ::=
 entity entity_name [(architecture_identifier)]

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

69

 | configuration configuration_name
 | open

entity_class ::=
 entity | architecture | configuration
| procedure | function| package
| type | subtype | constant
| signal | variable| component
| label | literal | units
| group | file

entity_class_entry ::= entity_class [<>]

entity_class_entry_list ::=
 entity_class_entry {, entity_class_entry }

entity_declaration ::=
 entity identifier is
 entity_header
 entity_declarative_part
[begin
 entity_statement_part]
 end [entity] [entity_simple_name] ;

entity_declarative_item ::
 subprogram_declaration
 | subprogram_body
 | type_declaration
 | subtype_declaration
 | constant_declaration
 | signal_declaration
 | shared_variable_declaration
 | file_declaration
 | alias_declaration
 | attribute_declaration
 | attribute_specification
 | disconnection_specification
 | use_clause
 | group_template_declaration
 | group_declaration

entity_declarative_part ::=
 { entity_declarative_item }

entity_designator ::= entity_tag [signature]

entity_header ::=
 [formal_generic_clause]
 [formal_port_clause]

entity_name_list ::=
 entity_designator {, entity_designator}
 | others
 | all

entity_specification ::=
 entity_name_list : entity_class

entity_statement ::=
 concurrent_assertion_statement
 | passive_concurrent_procedure_call
 | passive_process_statement

entity_statement_part ::=
 { entity_statement }

entity_tag ::= simple_name | character_literal | operator_symbol

enumeration_literal ::= identifier | character_literal

enumeration_type_definition ::=
 (enumeration_literal { , enumeraton_literal })

exit_statement ::=
 [label:] exit [loop_label] [when condition] ;

exponent ::= E [+] integer | E - integer

expression ::=

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

70

 relation { and relation }
 | relation { or relation }
 | relation { xor relation }
 | relation [nand relation]
 | relation [nor relation]
 | relation { xnor relation }

extended_digit ::= digit | letter

extended_identifier ::=
\ graphic_character { graphic_character } \

factor ::=
 primary [** primary]
 | abs primary
 | not primary

file_declaration ::=
 file identifier_list : subtype_indication [file_open_information] ;

file_logical_name ::= string_expression

file_open_information ::=
 [open file_open_kind_expression] is file_logical_name

file_type_definition ::= file of type_mark

floating_type_definition ::= range_constraint

formal_designator ::=
 generic_name
 | port_name
 | parameter_name

formal_parameter_list ::= parameter_interface_list

formal_part ::=
 formal_designator
 | function_name(formal_designator)
 | type_mark(formal_designator)

full_type_declaration ::=
 type identifier is type_definition ;

function_call ::=
 function_name [(actual_parameter_part)]

generate_statement ::=
 generate_label:
 generation_scheme generate
 [{ block_declarative_item }
 begin]
 { concurrent_statement }
 end generate [generate_label] ;

generation_scheme ::=
 for generate_parameter_specification
 | if condition

generic_clause ::=
 generic(generic_list);

generic_list ::= generic_interface_list

generic_map_aspect ::=
 generic map (generic_association_list)

graphic_character ::=
 basic_graphic_character | lower_case_letter | other_special_character

group_constituent ::= name | character_literal

group_constituent_list ::= group_constituent {, group_constituent }

group_declarataion ::=
 group identifier : group_template_name(group_consituent_list);

group_template_declaration ::=
 group identifier is (entity_class_entry_list) ;

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

71

guarded_signal_specification ::=
 guarded_signal_list : type_mark

identifier ::=
 basic_identifier | extended_identifier

identifier_list ::= identifier { , identifier }

if_statement ::=
 [if_label:]
 if condition then
 sequence_of_statements
 { elsif condition then
 sequence_of_statements }
 [else
 sequence_of_statements]
 end if [if_label] ;

incomplete_type_declaration ::= type identifier ;

index_constraint ::= (discrete_range { , discrete_range })

index_specification ::=
 discrete_range
 | static_expression

index_subtype_definition ::= type_mark range <>

indexed_name ::= prefix (expression {, expression })

instantiated_unit ::=
 [component] component_name
 | entity entity_name [(architecture_name)]
 | configuration configuration_name

instantiation_list ::=
 instantiation_label {, instantiation_label}
 | others
 | all

integer ::= digit { [underline] digit }

integer_type_definition ::= range_constraint

interface_constant_declaration ::=
 [constant] identifier_list : [in] subtype_indication [:= static_expression]

interface_declaration ::=
 interface_constant_declaration
 | interface_signal_declaration
 | interface_variable_declaration
 | interface_file_declaration

interface_element ::= interface_declaration

interface_file_declaration ::=
 file identifier_list : subtype_indication

interface_list ::=
 interface_element {; interface_element}

interface_signal_declaration ::=
 [signal] identifier_list : [mode] subtype_indication [bus]
 [:= static_expression]

interface_variable_declaration ::=
 [variable] identifier_list : [mode] subtype_indication
 [:= static_expression]

iteration_scheme ::=
 while condition
 | for loop_parameter_specification

label ::= identifier

letter ::= upper_case_letter | lower_case_letter

letter_or_digit ::= letter | digit

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

72

library_clause ::= library logical_name_list ;

library_unit ::=
 primary_unit
 | secondary_unit

literal ::=
 numeric_literal
 | enumeration_literal
 | string_literal
 | bit_string_literal
 | null

logical_name ::= identifier

logical_name_list ::= logical_name { , logical_name }

logical_operator ::= and | or | nand | nor | xor | xnor

loop_statement ::=
 [loop_label:]
 [iteration_scheme] loop
 sequence_of_statements
 end loop [loop_label] ;

miscellaneous_operator ::= ** | abs | not

mode ::= in | out | inout | buffer | linkage

multiplying_operator ::= * | / | mod | rem

name ::=
 simple_name
 | operator_symbol
 | selected_name
 | indexed_name
 | slice_name
 | attribute_name

next_statement ::=
 [label:] next [loop_label] [when condition] ;

null_statement ::=
 [label:] null ;

numeric_literal ::=
 abstract_literal
 | physical_literal

object_declaration ::=
 constant_declaration
 | signal_declaration
 | variable_declaration
 | file_declaration

operator_symbol ::= string_literal

options ::= [guarded] [delay_mechanism]

package_body ::=
 package body package_simple_name is
 package_body_declarative_part
 end [package body] [package_simple_name] ;

package_body_declarative_item ::=
 subprogram_declaration
 | subprogram_body
 | type_declaration
 | subtype_declaration
 | constant_declaration
 | shared_variable_declaration
 | file_declaration
 | alias_declaration
 | use_clause
 | group_template_declaration
 | group_declaration

package_body_declarative_part ::=

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

73

 { package_body_declarative_item }

package_declaration ::=
 package identifier is
 package_declarative_part
 end [package] [package_simple_name] ;

package_declarative_item ::=
 subprogram_declaration
 | type_declaration
 | subtype_declaration
 | constant_declaration
 | signal_declaration
 | shared_variable_declaration
 | file_declaration
 | alias_declaration
 | component_declaration
 | attribute_declaration
 | attribute_specification
 | disconnection_specification
 | use_clause
 | group_template_declaration
 | group_declaration

package_declarative_part ::=
 { package_declarative_item }

parameter_specification ::=
 identifier in discrete_range

physical_literal ::= [abstract_literal] unit_name

physical_type_definition ::=
 range_constraint
 units
 primary_unit_declaration
 { secondary_unit_declaration }
 end units [physical_type_simple_name]

port_clause ::=
 port(port_list);

port_list ::= port_interface_list

port_map_aspect ::=
 port map (port_association_list)

prefix ::=
 name
 | function_call

primary ::=
 name
 | literal
 | aggregate
 | function_call
 | qualified_expression
 | type_conversion
 | allocator
 | (expression)

primary_unit ::=
 entity_declaration
 | configuration_declaration
 | package_declaration

primary_unit_declaration ::= identifier ;

procedure_call ::= procedure_name [(actual_parameter_part)]

procedure_call_statement ::= [label:] procedure_call ;

process_declarative_item ::=
 subprogram_declaration
 | subprogram_body
 | type_declaration
 | subtype_declaration
 | constant_declaration
 | variable_declaration

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

74

 | file_declaration
 | alias_declaration
 | attribute_declaration
 | attribute_specification
 | use_clause
 | group_template_declaration
 | group_declaration

process_declarative_part ::=
 { process_declarative_item }

process_statement ::=
 [process_label:]
 [postponed] process [(sensitivity_list)] [is]
 process_declarative_part
 begin
 process_statement_part
 end process [process_label] ;

process_statement_part ::=
 { sequential_statement }

qualified_expression ::=
 type_mark’(expression)
 | type_mark’aggregate

range ::=
 range_attribute_name
 | simple_expression direction simple_expression

range_constraint ::= range range

record_type_definition ::=
 record
 element_declaration
 { element_declaration }
 end record [record_type_simple_name]

relation ::=
 shift_expression [relational_operator shift_expression]

relational_operator ::= = | /= | < | <= | > | >=

report_statement ::=
 [label:] report expression
 [severity expression] ;

return_statement ::=
 [label:] return [expression] ;

scalar_type_definition ::=
 enumeration_type_definition
 | integer_type_definition
 | physical_type_definition
 | floating_type_definition

secondary_unit ::=
 architecture_body
 | package_body

secondary_unit_declaration ::= identifier = physical_literal ;

selected_name ::= prefix.suffix

selected_signal_assignment ::=
 with expression select
 target <= options selected_waveforms ;

selected_waveforms ::=
 { waveform when choices , }
 waveform when choices

sensitivity_clause ::= on sensitivity_list

sensitivity_list ::= signal_name {, signal_name}

sequence_of_statements ::=
 { sequential_statement }

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

75

sequential_statement ::=
 wait_statement
 | assertion_statement
 | report_statement
 | signal_assignment_statement
 | variable_assignment
 | procedure_call_statement
 | if_statement
 | case_statement
 | loop_statement
 | next_statement
 | exit_statement
 | return_statement
 | null_statement

shift_expression ::=
 simple_expression [shift_operator simple_expression]

shift_operator ::= sll | srl | sla | sra | rol | ror

sign ::= + | -

signal_assignment_statement ::=
 [label:] target <= [delay_mechanism] waveform ;

signal_declaration ::=
 signal identifier_list : subtype_indication [signal_kind] [:= expression] ;

signal_kind ::= register | bus

signal_list ::=
 signal_name {, signal_name }
 | others
 | all

signature ::= [[type_mark { , type_mark }] [return type_mark]

simple_expression ::=
 [sign] term { adding_operator term }

simple_name ::= identifier

slice_name ::= prefix (discrete_range)

string_literal ::= “ { graphic_character } “

subprogram_body ::=
 subprogram_specification is
 subprogram_declarative_part
 begin
 subprogram_statement_part]
 end [subprogram_kind] [designator] ;

subprogram_declaration ::=
 subprogram_specification ;

subprogram_declarative_item ::=
 subprogram_declaration
 | subprogram_body
 | type_declaration
 | subtype_declaration
 | constant_declaration
 | variable_declaration
 | file_declaration
 | alias_declaration
 | attribute_declaration
 | attribute_specification
 | use_clause
 | group_template_declaration
 | group_declaration

subprogram_declarative_part ::=
 { subprogram_declarative_item }

subprogram_kind ::= procedure | function

subprogram_specification ::=
 procedure designator [(formal_parameter_list)]
 | [pure | impure] function designator [(formal_parameter_list)]

IEEE 2001 September 6
P1076.6-2001

Copyright © 2001 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change

76

 return type_mark

subprogram_statement_part ::=
 { sequential_statement }

subtype_declaration ::=
 subtype identifier is subtype_indication ;

subtype_indication ::=
 [resolution_function_name] type_mark [constraint]

suffix ::=
 simple_name
 | character_literal
 | operator_symbol
 | all

target ::=
 name
 | aggregate

term ::=
 factor { multiplying_operator factor }

timeout_clause ::= for time_expression

type_conversion ::= type_mark(expression)

type_declaration ::=
 full_type_declaration
 | incomplete_type_declaration

type_definition ::=
 scalar_type_definition
 | composite_type_definition
 | access_type_definition
 | file_type_definition

type_mark ::=
 type_name
 | subtype_name

unconstrained_array_definition ::=
 array (index_subtype_definition { , index_subtype_definition })
 of element_subtype_indication

use_clause ::=
 use selected_name {, selected_name} ;

variable_assignment_statement ::=
 [label:] target := expression ;

variable_declaration ::=
 [shared] variable identifier_list : subtype_indication [:= expression] ;

wait_statement ::=
 [label:] wait [sensitivity_clause] [condition_clause] [timeout_clause] ;

waveform ::=
 waveform_element {, waveform_element}
 | unaffected

waveform_element ::=
 value_expression [after time_expression]
 | null [after time_expression]

