

Digital Design

Chapter 2:
 Combinational Logic Design

Slides to accompany the textbook Digital Design, First Edition, by Frank Vahid, John Wiley and Sons Publishers, 2007 http://www.ddvahid.com

Copyright © 2007 Frank Vahid

Switches

- Electronic switches are the basis of binary digital circuits
- Electrical terminology
- Voltage: Difference in electric potential between two points
- Analogous to water pressure
- Current: Flow of charged particles
- Analogous to water flow
- Resistance: Tendency of wire to resist current flow
- Analogous to water pipe diameter

- $V=I * R$ (Ohm's Law)

Switches

- A switch has three parts
- Source input, and output
- Current wants to flow from source input to output
- Control input
- Voltage that controls whether that current can flow
- The amazing shrinking switch
- 1930s: Relays

- 1940s: Vacuum tubes
- 1950s: Discrete transistor
- 1960s: Integrated circuits (ICs)
- Initially just a few transistors on IC
- Then tens, hundreds, thousands...

quarter
(to see the relative size)
Frank Vahid

Moore's Law

- IC capacity doubling about every 18 months for several decades
- Known as "Moore's Law" after Gordon Moore, co-founder of Intel
- Predicted in 1965 predicted that components per IC would double roughly every year or so
- Book cover depicts related phenomena
- For a particular number of transistors, the IC shrinks by half every 18 months
- Notice how much shrinking occurs in just about 10 years
- Enables incredibly powerful computation in incredibly tiny devices
- Today's ICs hold billions of transistors
- The first Pentium processor (early 1990s) needed only 3 million

Digital Design
Copyright © 2006
Frank Vahid

The CMOS Transistor

- CMOS transistor
- Basic switch in modern ICs

Boolean Algebra and its Relation to Digital Circuits

- To understand the benefits of "logic gates" vs. switches, we should first understand Boolean algebra
- "Traditional" algebra
- Variable represent real numbers
- Operators operate on variables, return real numbers
- Boolean Algebra
- Variables represent 0 or 1 only
- Operators return 0 or 1 only
- Basic operators
- AND: a AND b returns 1 only when both $a=1$ and $b=1$
- OR: a OR b returns 1 if either (or both) $a=1$ or $b=1$
- NOT: NOT a returns the opposite of a (1 if $a=0,0$ if $a=1)$

Boolean Algebra and its Relation to Digital Circuits

- Developed mid-1800's by George Boole to formalize human thought
- Ex: "I'll go to lunch if Mary goes OR John goes, AND Sally does not go."
- Let F represent my going to lunch (1 means I go, 0 I don't go)
- Likewise, m for Mary going, j for John, and s for Sally
- Then $\mathbf{F}=(\mathrm{m}$ OR j) AND NOT(s)
- Nice features
- Formally evaluate
- m=1, j=0, s=1 --> F = (1 OR 0) AND NOT(1) $=1$ AND $0=\underline{\mathbf{0}}$
- Formally transform
- $\mathrm{F}=(\mathrm{m}$ and $\mathrm{NOT}(\mathrm{s})$) OR (j and NOT(s))
" Looks different, but same function
» We'll show transformation techniques soon

Evaluating Boolean Equations

- Evaluate the Boolean equation $F=(\mathbf{a}$ AND b) OR (c AND d) for the given values of variables a, b, c, and d :
- Q1: $a=1, b=1, c=1, d=0$.
- Answer: $F=(1$ AND 1) $\mathrm{OR}(1 \mathrm{AND} 0)=1 \mathrm{OR} 0=1$.
- Q2: $a=0, b=1, c=0, d=1$.
- Answer: $\mathrm{F}=(0 \mathrm{AND} 1) \mathrm{OR}(0 \mathrm{AND} 1)=0 \mathrm{OR} 0=0$.
- Q3: $\mathrm{a}=1, \mathrm{~b}=1, \mathrm{c}=1, \mathrm{~d}=1$.
- Answer: $\mathrm{F}=(1 \mathrm{AND} 1) \mathrm{OR}(1 \mathrm{AND} 1)=1 \mathrm{OR} 1=1$.

Converting to Boolean Equations

- Convert the following English statements to a Boolean equation
- Q1. a is 1 and b is 1 .
- Answer: F = a AND b
- Q2. either of a or b is 1 .
- Answer: F = a OR b
- Q3. both a and b are not 0 .
- Answer:
- (a) Option 1: F = NOT(a) AND NOT(b)
- (b) Option 2: F = a OR b
- Q4. a is 1 and b is 0.
- Answer: $\mathrm{F}=\mathrm{a}$ AND NOT(b)

Converting to Boolean Equations

- Q1. A fire sprinkler system should spray water if high heat is sensed and the system is set to enabled.
- Answer: Let Boolean variable h represent "high heat is sensed," e represent "enabled," and F represent "spraying water." Then an equation is: $\mathrm{F}=\mathrm{h}$ AND e .
- Q2. A car alarm should sound if the alarm is enabled, and either the car is shaken or the door is opened.
- Answer: Let a represent "alarm is enabled," s represent "car is shaken," d represent "door is opened," and F represent "alarm sounds." Then an equation is: $F=$ a AND (s OR d).
- (a) Alternatively, assuming that our door sensor d represents "door is closed" instead of open (meaning $d=1$ when the door is closed, 0 when open), we obtain the following equation: $F=$ a AND (s OR NOT(d)).

Relating Boolean Algebra to Digital Design

NOT/OR/AND Logic Gate Timing Diagrams

Building Circuits Using Gates

- Recall Chapter 1 motion-in-dark example
- Turn on lamp ($\mathrm{F}=1$) when motion sensed $(\mathrm{a}=1)$ and no light $(\mathrm{b}=0$)
- F = a AND NOT(b)
- Build using logic gates, AND and NOT, as shown
- We just built our first digital circuit!

Example: Converting a Boolean Equation to a Circuit of Logic Gates

- Q: Convert the following equation to logic gates:
F = a AND NOT(b OR NOT(c))

(a)

(b)

Example: Seat Belt Warning Light System

- Design circuit for warning light
- Sensors
- s=1: seat belt fastened
- k=1: key inserted
- $p=1$: person in seat

- Capture Boolean equation
- person in seat, and seat belt not fastened, and key inserted
w = p AND NOT(s) AND k
- Convert equation to circuit
- Notice
- Boolean algebra enables easy capture as equation and conversion to circuit
- How design with switches?
- Of course, logic gates are built from switches, but we think at level of logic gates, not switches

Digital Design
Copyright © 2006

Some Circuit Drawing Conventions

Boolean Algebra

- By defining logic gates based on Boolean algebra, we can use algebraic methods to manipulate circuits
- So let's learn some Boolean algebraic methods
- Start with notation: Writing a AND b, a OR b, and NOT(a) is cumbersome
- Use symbols: a * $\mathrm{b}, \mathrm{a}+\mathrm{b}$, and a^{\prime} (in fact, a * b can be just ab).
- Original: $w=(p$ AND NOT(s) AND k) OR t
- New: w = ps'k + t
- Spoken as " w equals p and s prime and k, or t "
- Or even just " w equals p s prime k, or t "
- s' known as "complement of s"
- While symbols come from regular algebra, don't say "times" or "plus"

Boolean algebra precedence, highest precedence first.
Symbol Name Description
() Parentheses Evaluate expressions nested in parentheses first
, NOT Evaluate from left to right

* AND Evaluate from left to right

Digital Design
Copyright © 2006
Frank Vahid
OR Evaluate from left to right

Boolean Algebra Operator Precendence

- Evaluate the following Boolean equations, assuming $a=1, b=1, c=0, d=1$.
- Q1. F = a * b + c.
- Answer: * has precedence over + , so we evaluate the equation as $\mathrm{F}=(1$ * 1$)+0=$ (1) $+0=1+0=1$.
- Q2. $F=a b+c$.
- Answer: the problem is identical to the previous problem, using the shorthand notation for *.
- Q3. $F=a b$ '.
- Answer: we first evaluate b' because NOT has precedence over AND, resulting in $F=1 *\left(1^{\prime}\right)=1 *(0)=1 * 0=0$.
- Q4. F = (ac)'.
- Answer: we first evaluate what is inside the parentheses, then we NOT the result, yielding $\left(1^{*} 0\right)^{\prime}=(0)^{\prime}=0{ }^{\prime}=1$.
- Q5. F = $\left(a+b^{\prime}\right){ }^{*} c+d^{\prime}$.
- Answer: Inside left parentheses: $\left(1+\left(1^{\prime}\right)\right)=(1+(0))=(1+0)=1$. Next, * has precedence over + , yielding $(1 * 0)+1^{\prime}=(0)+1^{\prime}$. The NOT has precedence over the OR, giving $(0)+\left(1^{\prime}\right)=(0)+(0)=0+0=0$.

Boolean Algebra Terminology

- Example equation: $\mathbf{F}(\mathbf{a}, \mathbf{b}, \mathbf{c})=\mathbf{a} \mathbf{b c}+\mathbf{a b c} \boldsymbol{+} \mathbf{a b}+\mathbf{c}$
- Variable
- Represents a value (0 or 1)
- Three variables: a, b, and c
- Literal
- Appearance of a variable, in true or complemented form
- Nine literals: $a^{\prime}, b, c, a, b, c^{\prime}, a, b$, and c
- Product term
- Product of literals
- Four product terms: a'bc, abc', ab, c
- Sum-of-products
- Equation written as OR of product terms only
- Above equation is in sum-of-products form. "F = (a+b)c + d" is not.

Boolean Algebra Properties

- Commutative
- $a+b=b+a$
- $a * b=b * a$
- Distributive
$-a *(b+c)=a * b+a * c$
$-a+(b * c)=(a+b) *(a+c)$

> - (this one is tricky!)

- Associative
$-(a+b)+c=a+(b+c)$
- $(a * b) * c=a *(b * c)$
- Identity
$-0+a=a+0=a$
- 1 * $a=a * 1=a$
- Complement
- $a+a^{\prime}=1$
- $a^{*} a^{\prime}=0$
- To prove, just evaluate all possibilities

Digital Design
Copyright © 2006
Frank Vahid

Example uses of the properties

- Show abc' equivalent to c'ba.
- Use commutative property:
- $a^{*} b^{*} c^{\prime}=a^{*} c^{\prime *} b=c^{\prime *} a^{*} b=c^{\prime *} b^{*} a=$ c'ba.
- Show $a b c+a b c c^{\prime}=a b$.
- Use first distributive property
- $a b c+a b c^{\prime}=a b\left(c+c^{\prime}\right)$.
- Complement property
- Replace $\mathrm{c}+\mathrm{c}^{\prime}$ by $1: \mathrm{ab}\left(\mathrm{c}+\mathrm{c}^{\prime}\right)=\mathrm{ab}(1)$.
- Identity property
- $a b(1)=a b^{\star} 1=a b$.
- Show $x+x^{\prime} z$ equivalent to $x+z$.
- Second distributive property
- Replace $x+x^{\prime} z$ by $\left(x+x^{\prime}\right)^{*}(x+z)$.
- Complement property
- Replace ($x+x^{\prime}$) by 1 ,
- Identity property
- replace $1^{\star}(x+z)$ by $x+z$.

Example that Applies Boolean Algebra Properties

- Want automatic door opener circuit (e.g., for grocery store)
- Output: $f=1$ opens door
- Inputs:
- $\mathrm{p}=1$: person detected
- $\mathrm{h}=1$: switch forcing hold open
- $\mathrm{c}=1$: key forcing closed
- Want open door when
- $\mathrm{h}=1$ and $\mathrm{c}=0$, or
- $h=0$ and $p=1$ and $c=0$
- Equation: $\mathrm{f}=\mathrm{hc}{ }^{\prime}+\mathrm{h} \mathrm{hc}^{\prime}$

Digital Design
Copyright © 2006
Frank Vahid

- Found inexpensive chip that computes:
- $\mathrm{f}=\mathrm{c}$ 'hp $+\mathrm{c}^{\prime} \mathrm{hp} \mathrm{p}^{\prime}+\mathrm{c}$ 'h'p
- Can we use it?
- Is it the same as $f=c^{\prime}(p+h)$?
- Use Boolean algebra:
$\mathrm{f}=\mathrm{c}$ 'hp + c'hp' $^{\prime}+$ c'h'p $^{\prime}$
$f=c^{\prime} h\left(p+p^{\prime}\right)+c^{\prime} h^{\prime} p$ (by the distributive property)
$\mathrm{f}=\mathrm{c}$ 'h(1) $+\mathrm{c}^{\prime} \mathrm{h}$ 'p (by the complement property)
$\mathrm{f}=\mathrm{c}$ 'h $+\mathrm{c}^{\prime} \mathrm{h}^{\prime} \mathrm{p}$
(by the identity property)
$f=h c^{\prime}+h^{\prime} p c$ (by the commutative property)

Same!

Boolean Algebra: Additional Properties

- Null elements
$-a+1=1$
$-a * 0=0$
- Idempotent Law
$-a+a=a$
- $a^{*} a=a$
- Involution Law
- ($\left.a^{\prime}\right)^{\prime}=a$
- DeMorgan's Law
$-(a+b)^{\prime}=a^{\prime} b^{\prime}$
$-(a b)^{\prime}=a^{\prime}+b^{\prime}$
- Very useful!

Aircraft lavatory sign example

- Behavior door locked
- Equation and circuit
- $S^{\prime}=a^{\prime}+b^{\prime}+c^{\prime}$
- Transform
- (abc) $=a^{\prime}+b^{\prime}+c^{\prime}(b y$ DeMorgan's Law)
- $\mathrm{S}=(\mathrm{abc})^{\prime}$
- New equation and circuit

Digital Design
Copyright © 20
Frank Vahid evaluate all possibilities

- Three lavatories, each with sensor (a, b, c), equals 1 if
- Light "Available" sign (S) if any lavatory available

- Alternative: Instead of lighting "Available," light "Occupied"
- Opposite of "Available" function S $=a^{\prime}+b^{\prime}+c^{\prime}$
- So $\mathrm{S}^{\prime}=\left(\mathrm{a}^{\prime}+\mathrm{b}^{\prime}+\mathrm{c}^{\prime}\right)^{\prime}$
- $S^{\prime}=\left(a^{\prime}\right)^{\prime *}\left(b^{\prime}\right)^{\prime *}\left(c^{\prime}\right)^{\prime}$ (by DeMorgan's Law)
- $\mathrm{S}^{\prime}=\mathrm{a}$ * ${ }^{\text {* }} \mathrm{c}$ (by Involution Law)
- Makes intuitive sense
- Occupied if all doors are locked

Representations of Boolean Functions

English 1: F outputs 1 when a is 0 and b is 0 , or when a is 0 and b is 1 .

- A function can be represented in different ways
- Above shows seven representations of the same functions $F(a, b)$, using four different methods: English, Equation, Circuit, and Truth Table Digital Design Copyright © 2006 Frank Vahid

Truth Table Representation of Boolean Functions

- Define value of F for each possible combination of input values
- 2-input function: 4 rows
- 3 -input function: 8 rows
- 4-input function: 16 rows
- Q: Use truth table to define function $F(a, b, c)$ that is 1 when abc is 5 or greater in binary
(a)

a	b	c	F
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

(b)

a	b	c	F
0	0	0	$\mathbf{0}$
0	0	1	$\mathbf{0}$
0	1	0	$\mathbf{0}$
0	1	1	0
1	0	0	$\mathbf{0}$
1	0	1	1
1	1	0	1
1	1	1	$\mathbf{1}$

a	b	c	d	F
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	
			(c)	

Converting among Representations

- Can convert from any representation to any other
- Common conversions
- Equation to circuit (we did this earlier)
- Truth table to equation (which we can convert to circuit)
- Easy -- just OR each input term that should output 1
- Equation to truth table
- Easy -- just evaluate equation for each input combination (row)
- Creating intermediate columns helps

Q: Convert to truth table: $F=a^{\prime} b^{\prime}+a^{\prime} b$

Inputs		Outputs	Term
a	b	F	$\mathrm{F}=$ sum of
0	0	1	$\mathrm{a}^{\prime} \mathrm{b}^{\prime}$
0	1	1	$\mathrm{a}^{\prime} \mathrm{b}$
1	0	0	
1	1	0	

$$
\mathrm{F}=\mathrm{a}^{\prime} \mathrm{b}^{\prime}+\mathrm{a}^{\prime} \mathrm{b}
$$

Q: Convert to equation

a	b	c	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1		
1	0	1	$a b c^{\prime}$
1	1	1	1
	$a b c$		

$F=a b \prime c+a b c c^{\prime}+a b c$

Inputs				Output
a	b	$\mathrm{a}^{\prime} \mathrm{b}^{\prime}$	$\mathrm{a}^{\prime} \mathrm{b}$	F
0	0	1	0	$\mathbf{1}$
0	1	0	1	$\mathbf{1}$
1	0	0	0	$\mathbf{0}$
1	1	0	0	0

Standard Representation: Truth Table

- How can we determine if two functions are the same?
- Recall automatic door example
- Same as $\mathrm{f}=\mathrm{hc}$ ' +h 'pc'?
- Used algebraic methods
- But if we failed, does that prove not equal? No.
- Solution: Convert to truth tables
- Only ONE truth table representation of a given function
- Standard representation -- for given function, only one version in standard form exists

$$
\begin{aligned}
& \mathrm{f}=\mathrm{c}^{\prime} \mathrm{hp}+\mathrm{c}^{\prime} \mathrm{h} \mathrm{p}^{\prime}+\mathrm{c}^{\prime} \mathrm{h}^{\prime} \\
& \mathrm{f}=\mathrm{c}^{\prime} \mathrm{h}\left(\mathrm{p}+\mathrm{p}^{\prime}\right)+\mathrm{c}^{\prime} \mathrm{h}^{\prime} \mathrm{p} \\
& f=c^{\prime} h(1)+c^{\prime} h^{\prime} p \\
& \mathrm{f}=\mathrm{c} \text { 'h }+\mathrm{c} \text { 'h'p } \\
& \text { (what if we stopped here?) } \\
& \mathrm{f}=\mathrm{hc} \mathrm{c}^{\prime}+\mathrm{h}^{\prime} \mathrm{pc}{ }^{\prime}
\end{aligned}
$$

Q: Determine if $F=a b+a^{\prime}$ is same function as $F=a^{\prime} b^{\prime}+a^{\prime} b+a b$, by converting each to truth table first

Canonical Form -- Sum of Minterms

- Truth tables too big for numerous inputs
- Use standard form of equation instead
- Known as canonical form
- Regular algebra: group terms of polynomial by power
- $a x^{2}+b x+c \quad\left(3 x^{2}+4 x+2 x^{2}+3+1-->5 x^{2}+4 x+4\right)$
- Boolean algebra: create sum of minterms
- Minterm: product term with every function literal appearing exactly once, in true or complemented form
- Just multiply-out equation until sum of product terms
- Then expand each term until all terms are minterms

Q: Determine if $\mathrm{F}(\mathrm{a}, \mathrm{b})=\mathrm{ab}+\mathrm{a}^{\prime}$ is same function as $\mathrm{F}(\mathrm{a}, \mathrm{b})=\mathrm{a}^{\prime} \mathrm{b}^{\prime}+\mathrm{a}^{\prime} \mathrm{b}+\mathrm{ab}$, by converting first equation to canonical form (second already in canonical form)
$F=a b+a^{\prime}$ (already sum of products)
$F=a b+a^{\prime}\left(b+b^{\prime}\right)$ (expanding term)
$F=a b+a^{\prime} b+a^{\prime} b^{\prime}$ (SAME -- same three terms as other equation)

Multiple-Output Circuits

- Many circuits have more than one output
- Can give each a separate circuit, or can share gates
- Ex: $F=\underline{a b}+c^{\prime}, \quad G=\underline{a b}+b c$

(a)

Option 1: Separate circuits

(b)

Option 2: Shared gates

Combinational Logic Design Process

Step
Step 1 Capture the function

Step 2 Convert to equations

Step 3 Implement as a gatebased circuit

Description
Create a truth table or equations, whichever is most natural for the given problem, to describe the desired behavior of the combinational logic.

This step is only necessary if you captured the function using a truth table instead of equations. Create an equation for each output by ORing all the minterms for that output. Simplify the equations if desired.

For each output, create a circuit corresponding to the output's equation. (Sharing gates among multiple outputs is OK optionally.)

Example: Three 1s Detector

- Problem: Detect three consecutive 1 s in 8-bit input: abcdefgh
- $00011101 \rightarrow 1 \quad 10101011 \rightarrow 0$ $11110000 \rightarrow 1$
- Step 1: Capture the function
- Truth table or equation?
- Truth table too big: 2^8=256 rows
- Equation: create terms for each possible case of three consecutive 1 s
- $y=a b c+b c d+c d e+d e f+e f g+f g h$
- Step 2: Convert to equation -- already done
- Step 3: Implement as a gate-based circuit

Example: Number of 1s Count

- Problem: Output in binary on two outputs yz the number of 1 s on three inputs
- $010 \rightarrow 01 \quad 101 \rightarrow 10 \quad 000 \rightarrow 00$
- Step 1: Capture the function
- Truth table or equation?
- Truth table is straightforward
- Step 2: Convert to equation

Inputs			(\# of 1s)	Outputs	
a	b	c		y	z
0	0	0	(0)	0	0
0	0	1	(1)	0	1
0	1	0	(1)	0	1
0	1	1	(2)	1	0
1	0	0	(1)	0	1
1	0	1	(2)	1	0
1	1	0	(2)	1	0
1	1	1	(3)	1	1

- $y=a a^{\prime} b c+a b \prime c+a b c^{\prime}+a b c$
- $z=a^{\prime} b^{\prime} c+a{ }^{\prime} b c^{\prime}+a b{ }^{\prime} c^{\prime}+a b c$
- Step 3: Implement as a gatebased circuit

More Gates: Example Uses

- Aircraft lavatory sign example
- S = (abc)'

- Detecting all Os
- Use NOR
- Detecting equality
- Use XNOR
- Detecting odd \# of 1s

- Use XOR
- Useful for generating "parity" bit common for detecting errors

Completeness of NAND

- Any Boolean function can be implemented using just NAND gates. Why?
- Need AND, OR, and NOT
- NOT: 1-input NAND (or 2-input NAND with inputs tied together)
- AND: NAND followed by NOT
- OR: NAND preceded by NOTs
- Likewise for NOR

Number of Possible Boolean Functions

- How many possible functions of 2 variables?
- 2^{2} rows in truth table, 2 choices for each
$-2^{\left(2^{2}\right)}=2^{4}=16$ possible functions
- N variables

a	b	F	
0	0	0 or 1	2 choices
0	1	0 or 1	2 choices
1	0	0 or 1	2 choices
1	1	0 or 1	2 choices

- $2^{\text {N }}$ rows
$2^{4}=16$
possible functions
$-22^{\left(2^{\mathrm{N}}\right)}$ possible functions

a	b	f0	f1	f2	f3	f4	f5	f6	f7	$f 8$	f9	f10	$f 11$	f12	f13	f14	f15
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
		\bigcirc			๘		-		$\begin{aligned} & \text { م } \\ & \text { ro } \\ & \text { ̃ } \end{aligned}$		$\begin{aligned} & \text { o } \\ & \text { r } \\ & 0 \\ & \underset{\chi}{\chi} \\ & \sigma \end{aligned}$	-		\%		$\frac{0}{2}$	\checkmark

Decoders and Muxes

- Decoder: Popular combinational logic building block, in addition to logic gates
- Converts input binary number to one high output
- 2-input decoder: four possible input binary numbers
- So has four outputs, one for each possible input binary number
- Internal design
- AND gate for each output to detect input combination
- Decoder with enable e
- Outputs all 0 if e=0
- Regular behavior if e=1
- n-input decoder: 2^{n} outputs
 Frank Vahid

Decoder Example

- New Year's Eve Countdown Display
- Microprocessor counts from 59 down to 0 in binary on 6-bit output
- Want illuminate one of 60 lights for each binary number
- Use 6x64 decoder

- 4 outputs unused

Multiplexor (Mux)

- Mux: Another popular combinational building block
- Routes one of its N data inputs to its one output, based on binary value of select inputs
- 4 input mux \rightarrow needs 2 select inputs to indicate which input to route through
- 8 input mux $\rightarrow 3$ select inputs
- N inputs $\rightarrow \log _{2}(\mathrm{~N})$ selects
- Like a railyard switch

Mux Internal Design

4×1 mux

Mux Example

- City mayor can set four switches up or down, representing his/her vote on each of four proposals, numbered 0, 1, 2, 3
- City manager can display any such vote on large green/red LED (light) by setting two switches to represent binary 0,1 , 2 , or 3
- Use 4×1 mux

Mayor's switches

Muxes Commonly Together -- N -bit Mux

- Ex: Two 4-bit inputs, A (a3 a2 a1 a0), and B (b3 b2 b1 b0)
- 4-bit 2×1 mux (just four 2×1 muxes sharing a select line) can select between A or B

Additional Considerations

Schematic Capture and Simulation

- Schematic capture
- Computer tool for user to capture logic circuit graphically
- Simulator
- Computer tool to show what circuit outputs would be for given inputs
- Outputs commonly displayed as waveform

- Real gates have some delay
- Outputs don't change immediately after inputs change

Chapter Summary

- Combinational circuits
- Circuit whose outputs are function of present inputs
- No "state"
- Switches: Basic component in digital circuits
- Boolean logic gates: AND, OR, NOT -- Better building block than switches
- Enables use of Boolean algebra to design circuits
- Boolean algebra: uses true/false variables/operators
- Representations of Boolean functions: Can translate among
- Combinational design process: Translate from equation (or table) to circuit through well-defined steps
- More gates: NAND, NOR, XOR, XNOR also useful
- Muxes and decoders: Additional useful combinational building blocks

