
1 

EEL 5722C 
Field-Programmable Gate Array Design 

Lecture 19: Hardware-Software Co-Simulation* 

Prof. Mingjie Lin 

* Rabi Mahapatra, CpSc489 



2 

What is HW-SW co-simulation? 

•  A basic definition:  
Manipulating simulated hardware with software 

•  Goal of co-simulation:  To verify as much of the product functionality, 
hardware and software, as possible before fabricating the ASIC. 

(Assume that the ASIC contain some significant amount of software)  
•  In this lecture: Learn the methods and motivations of 

hardware-software co-simulation. 



3 

Overview 

•  In the Past:  
 co-simulation was adopted late in the process, after hardware is 

deemed to be working and stable. Software developers were often 
left to develop code for months with severely limited ability to test.  
–  Painful integration process, design flaw and could re-spin the silicon 

•  Now: 
–  Behavioral model simulation has matured, and simulation tools in 

general have improved to allow better simulation throughout the 
development cycle 

–   Co-design tools provide project architects with a simulation 
environment at a very high level of abstraction. 



4 

overview 

–  Possible to convert the English description of functionality into a 
formal specification language, and allow designers to work out 
the functional split between the hardware and the software in a 
simulation environment.  

•  Debug implementation can proceed with event and cycle 
driven simulators. With codesign tool, can simulate the 
product before actual implementation. Testing can be 
real cheap. 

•  Component integration is done at co-simulation 
environment with confidence before actual fabrication. 



5 

Simulation components 

1. Hardware design: Memory, CPU or many ASICs each 
with one or more CPUs 

2. Simulation platform: 
–   PC or workstation. Everything exists as process. 
–  Hybrid platforms with co-processors: off-load part of the load to 

co-processor, peripheral and test benches remain in software. 

HW, SW HW, SW 
HW 



6 

3. Emulation 

•  Special simulation environment with hardware 
–  runs whole design 
–  expensive 
–  10% of real time 
–  FPGA arrays may be the hardware 
–  allow designers of large products to find a class of problem that 

cannot be found in simulation 

–  can attach to real devices 



7 

4. Algorithms 

•  Event driven simulation:(gate level simulation) 
–  Most accurate as every active signal is calculated for every 

device during the clock cycle as it propagates 
–  Each signal is simulated for its value and its time of occurrence 
–  Excellent for timing analysis and verify race conditions 
–  computation intensive and hence very slow  

•  Cycle-based simulation: 
–  Calculate the state of the signals at clock edge(0 or 1) 
–  suitable for complex design that needs large number of tests 
–  10 times faster than event driven simulation, 20% area efficient 



8 

Algorithm contd. 

•  Data-Flow Simulator 

–  Signals are represented as stream of values without notion of 
time. Functional blocks are linked by signals. Blocks are 
executed when signals present at the input. 

–  Scheduler in the simulator determines the order of block 
executions. 

–  High level abstraction simulation used in the early stages of 
verification, typically to check the correctness of the algorithms. 



9 

Simulation’s Requirement on Hardware 

•  Most simulators can handel behavioral models except the 
emulators, that require synthesizable codes. 

•  Some simulators may not handel HDLs 

•  Cycle-based simulators can handel asynchronous designs at severe 
performance penality 

•  Choose simulator (s) in the beginning of design stage. You may use 
multiple simulators concurrently in a project. 

•  Example: You may use emulator for a problem that requires timing 
until few hundred microseconds of failure point, then export the state 
of the system into a simulator.  



10 

Simulator’s requirement on Software 

•  Simulation environment has effects on application 
software 

–  Programmers certainly need alternate version of application that do not 
have user interface code or any references to chips that is not part of 
the simulation environment. 

–  Reduce size of functionality and tables for speed. 

–  Example: consider simulating a 500 MHz processor that initializes a 
8KB table, that might take few minutes. Such trivial tasks together 
consume time but do not add to the quality of the simulators. 



11 

Simulation Methods 
•  co-design is a way to simulate at a very high level of abstraction, 

prior to the actual implementation. These simulations follow the 
theme of trading details for run-time speed. 

•   By creating a functional model which can be tested, system 
designers can make sure the requirements are clear. 

•  making a single model of both hardware and software 
functionality, the design boundary between the two is effectively 
removed.  

•  Having a running model also allows engineers to test different 
hardware/software functionality splits for performance and get 
some rough timing estimates for various ideas.  

•  Running a functional model also allows engineers to find 
fundamental bugs in the design before implementing them. Can 
reuse for performance updates. 



12 

Co-simulation methods 

•  POLIS: from UC Berkeley 
–  Cadence's Cierto VCC is based on ideas from POLIS.  

•  Synopsy’s COSSAP and Eaglei tools: promise a way to check the 
implementation against the original algorithmic specification for 
function equivalence. 

•  But the standard method of co-simulation is to run software directly 
on simulated hardware. It is implied that the CPU is part of the ASIC. 
Thus CPU is simulated at the same level as other hardware 
–  Good if your purpose is to design the CPU. However, if you use a core 

from the vendor, you are wasting valuable simulation resources. 



13 

Co-simulation methods (contd) 
Heterogeneous co-simulation  

•  Network different type of simulators together to attain better speed. 

•  Claims to be actual co-simulation strategy as it affords better ability 
to match the task with the tool, simulates at the level of details. 
–  For Example: let hw run in many simulators, sw on native PC/

workstation or in instruction-set-simulator (ISS). Simulation tool 
interfaces all these. 

HW SW 



14 

Heterogeneous co-simulation 

Homogenous/Heterogenous 
Product SW 

ISS (optional) 

compute 

Co-sim glue logic 

Product SW 

HW Implementation 

VHDL   Verilog 

Simulation algorithm 
Event    Cycle     Dataflow 

Simulation Engine 

PC                             Emulator 



15 

Heterogeneous  cosimulation  

•  How about performance? 
–  Complex enough to describe any situation 
–  Proponents: since software not running hardware simulation speed, in 

actual the performance will be more. 
•  How fast the software running when not doing hardware related task? 

–  If target CPU is not PC, you may use cross compiler 
–  When software runs directly on PC/WS, runs at the speed of WS 
–  When software can not run directly as processes on WS, you 

need instruction set simulator ( ISS interprets assembly 
language at instruction level as long as CPU details are not an 
issue) 

•  ISS usually runs at 20% of the speed of actual or native processes. 



16 

Hardware density of Heterogeneous 
simulation 

•  How much time software accesses hardware? 
•  Hardware density depends on applications and with in an 

application. 
•  In loosely coupled CPU system, the block responsible for hardware 

initializations has 30% instructions to access the hardware. 
•  In tightly coupled system, every memory reference could go through 

simulated hardware. 
•  In general hardware density is important for simulation speed. 
•  The base hardware and tools that communicate between the 

heterogenous environment can attribute to the speed too. 
•  If simulation is distributive (most often it happens these days), the 

network bandwidth, reliability and speed matters too  



17 

Cosimulation strategies 

•  What you simulate is what you get. Simulation is important for bug 
free test of the product. The product schedule forces suitable 
strategies. 

•  Due to decrease in feature size and increase in die size, more 
functionality are pushed to hardware ( could never happened in the 
past). Creates challenges for testing due to increased functionality. 
–  Formal design methods, code reviews and code reuse have help. 

Emulation engine is also of help but expensive. 
•  For typical strategies, we need to know the thoroughness to test and 

system’s environment. If it involves with health and safety, then 
detail testing strategy is sought. 



18 

Strategy 

•  Multi-pronged functional test strategy to build levels of 
assurance 
–  Basic initial tests prove functionality and complex tests are built 

upon working.  

–  Any single test method has some coverage hole. Event driven tests 
are closest to the real hardware but its slowness is coverage hole! 

–  Make balance between required test coverage and what might be 
avoided  

•  A simulation strategy might call for the functional specification to 
be written as a functional model (co-design).  
–  Hardware designer could use event driven tests for hardware 

blocks 

–  Software designer could do basic debug using ISS or cross 
compiler and with fake hardware calls.For detailed functional 
blocks, software could interface. After, completion of blocks, these 
can be dropped into the functional model for regression tests. 



19 

Strategy 

•  Simulation speed: Degrades when real components replace the 
functional blocks. The simulation speed depends on simulation 
engine, the simulation algorithm, the number of gates in the 
design, and whether the design is primarily synchronous or 
asynchronous 

•  Low cost cycle based simulation is a good compromise. Since it 
can not test physical characteristic of a design, event driven 
simulator may be used in conjunction. 

•  Cycle based simulators and emulators may have long 
compilation. Hence, not suitable for initial tests that needs many 
changes.  

•   Event driven and cycle based simulators have fairly equal 
debugging environments, all signals are available at all times. 
Emulators on the other hand, require the list of signals to be 
traced to be declared at compilation time 



20 

Strategy 

•  If the next problem can be found in a few microseconds of 
simulated time, then slower simulators with faster compilation 
times are appropriate. 

•   If the current batch of problems all take a couple hundred 
milliseconds, or even seconds of simulated time, then the 
startup overhead of cycle based simulation or even an emulator 
is worth the gain in run time speed.  

•  How about the portability of test benches? 

•  Test after fabrication? 
–  Fast simulators are useful. Track down the hardware fault is 

difficult. May patch the problem so as to make the problem 
reappear easily unless regression tests. 



21 

Strategy 

•  To determining which parts of the system software to run and how 
much software debug can be done without the hardware.  

•  Software engineer need to go through the code and disable 
functionality which is too costly for simulation, or if the sequence is 
important, find ways to reduce its execution time. 

•  The degree of fidelity between the simulated environment and the 
real world is both a requirement of simulation and a constantly 
shifting target throughout the simulation effort 



22 

Summary 

•  Issues and trade off discussed 
•  The use of HDLs by programmers and logic designers is 

good sign of convergence. 
•  Cosimulation is crucial for tightly coupled hardware and 

software ASICs. 
•  Every project is different with varying objectives. Hence 

choose the strategy as required. 



23 

Final issues 

•  Come by my office hours (right after class)  

•  Any questions or concerns?  


