
1 

EEL 5722C 
Field-Programmable Gate Array Design 

Lecture 17: Describing Synthesizable RTL in SystemC* 

Prof. Mingjie Lin 

* 2001 Synopsys, Inc. 



2 

System-Level Design 

•  Specifying the system 
•  Verifying its functionality 
•  Determining optimum system architecture by evaluating 

design alternatives 

•  Today’s complex systems have significant software 
content and are integrated into a system on a chip 
(SoC). 



3 

System-Level Design Challenges 

•  Component Integration 
– widely implemented strategy for handling complexity, but 

many of the components are provided from various 
sources. 

•  Tool Interoperability 
–  each tool uses a proprietary model format, which makes a 

model developed for one tool unsuitable for use with 
another tool 

•  Design Team Collaboration 
– Effective architecture design requires participation of the 

hardware and software design teams for creating models 
and influencing architectural decisions, which is called 
hardware-software co-design 



4 

Why Synthesis From SystemC? 

•  Imagine you are a hardware designer, you are 
given a architectural model contains a variety of 
models, including processor models, abstract 
bus models, and peripheral models. You need to 
implement the peripherals and verify the 
implementation in the context of the entire 
system.  

•  If you use a Verilog or VHDL synthesis tool, you 
need to rewrite the peripheral models in Verilog 
or VHDL, which is a time-consuming and error-
prone process 



5 

Why Synthesis From SystemC? 

•  Or you can synthesize the peripheral models 
from SystemC 
– Instead of throwing away the work done at the 

system level and recoding the design, you can 
take the abstract, non-synthesizable peripheral 
models and refine them into synthesizable 
models 

•  Verification Reuse 
– use the system-level verification environment to 

check the correctness of your implementation as 
you refine it. 



6 

Defining Modules and Processes 

•  The basic building block in SystemC is the 
module 

•  A SystemC module is a container in which 
processes and other modules are instantiated 

•  A typical module can have: 
– Single or multiple RTL processes to specify combinational 

or sequential logic 
– Multiple RTL modules to specify hierarchy 
– One or more member functions that are called from within 

an instantiated process or module 



7 

Module Example 

•  Processes 
–  describe the parallel behavior of 

hardware systems 
–  processes execute concurrently 

rather than sequentially like C++ 
functions 

–  The code within a process, 
however, executes sequentially 

•  Registering a Process 
•  Triggering Execution of a 

Process 
•  Reading and Writing Processes 
•  Types of Processes 



8 

Creating a Module 

•  Coding practice 
– Separate header file 

(module_name.h) 
–  Implementation file 

(module_name.cpp or 
module_name.cc) 

•  Module Header File 
– Port declarations 
–  Internal signal variable declarations 
–  Internal data variable declarations 
– Process declarations 
– Member function declarations 
– Module constructor 



9 

Module Ports 



10 

Signals 

•  Modules use ports to communicate with other modules 
–  In hierarchical modules, use signals to communicate between 

the ports of instantiated modules 
–  internal signals for peer-to-peer communication between 

processes within the same module  



11 

signal Syntax 



12 

Data Member Variables 

•  Do not use data 
variables for peer-to-
peer communication in 
a module. This can 
cause pre- and post-
synthesis simulation 
mismatches and 
nondeterminism (order 
dependency) in your 
design. 



13 

Creating a Process in a Module 



14 

Defining the Sensitivity List 

•  Defining a Level-Sensitive Process 



15 

Defining the Sensitivity List 

•  Defining a Edge-Sensitive Process 



16 

Limitations for Sensitivity Lists 

•  You cannot specify both edge-sensitive and level-sensitive 
inputs in the same process for synthesis. 

•  You cannot declare an sc_logic type for the clock or other 
edge-sensitive inputs. You can declare only an sc_in<bool> 
data type. 



17 

Module Constructor 

•  Register processes 

•  Define a sensitivity list for an SC_METHOD 
process 



18 

Implementing the Module 



19 

Reading and Writing Ports and Signals 



20 

Reading and Writing Bits of Ports and Signals 



21 

Signal and Port Assignments 



22 

Variable Assignment 



23 

Creating a Module With a Single SC_METHOD 
Process  



24 

Creating Module With Single SC_METHOD 
Process  



25 

Final issues 

•  Come by my office hours (right after class)  

•  Any questions or concerns?  


