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System-Level Design 

•  Specifying the system 
•  Verifying its functionality 
•  Determining optimum system architecture by evaluating 

design alternatives 

•  Today’s complex systems have significant software 
content and are integrated into a system on a chip 
(SoC). 
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System-Level Design Challenges 

•  Component Integration 
– widely implemented strategy for handling complexity, but 

many of the components are provided from various 
sources. 

•  Tool Interoperability 
–  each tool uses a proprietary model format, which makes a 

model developed for one tool unsuitable for use with 
another tool 

•  Design Team Collaboration 
– Effective architecture design requires participation of the 

hardware and software design teams for creating models 
and influencing architectural decisions, which is called 
hardware-software co-design 
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Why Synthesis From SystemC? 

•  Imagine you are a hardware designer, you are 
given a architectural model contains a variety of 
models, including processor models, abstract 
bus models, and peripheral models. You need to 
implement the peripherals and verify the 
implementation in the context of the entire 
system.  

•  If you use a Verilog or VHDL synthesis tool, you 
need to rewrite the peripheral models in Verilog 
or VHDL, which is a time-consuming and error-
prone process 
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Why Synthesis From SystemC? 

•  Or you can synthesize the peripheral models 
from SystemC 
– Instead of throwing away the work done at the 

system level and recoding the design, you can 
take the abstract, non-synthesizable peripheral 
models and refine them into synthesizable 
models 

•  Verification Reuse 
– use the system-level verification environment to 

check the correctness of your implementation as 
you refine it. 
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Defining Modules and Processes 

•  The basic building block in SystemC is the 
module 

•  A SystemC module is a container in which 
processes and other modules are instantiated 

•  A typical module can have: 
– Single or multiple RTL processes to specify combinational 

or sequential logic 
– Multiple RTL modules to specify hierarchy 
– One or more member functions that are called from within 

an instantiated process or module 
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Module Example 

•  Processes 
–  describe the parallel behavior of 

hardware systems 
–  processes execute concurrently 

rather than sequentially like C++ 
functions 

–  The code within a process, 
however, executes sequentially 

•  Registering a Process 
•  Triggering Execution of a 

Process 
•  Reading and Writing Processes 
•  Types of Processes 
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Creating a Module 

•  Coding practice 
– Separate header file 

(module_name.h) 
–  Implementation file 

(module_name.cpp or 
module_name.cc) 

•  Module Header File 
– Port declarations 
–  Internal signal variable declarations 
–  Internal data variable declarations 
– Process declarations 
– Member function declarations 
– Module constructor 
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Module Ports 
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Signals 

•  Modules use ports to communicate with other modules 
–  In hierarchical modules, use signals to communicate between 

the ports of instantiated modules 
–  internal signals for peer-to-peer communication between 

processes within the same module  
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signal Syntax 
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Data Member Variables 

•  Do not use data 
variables for peer-to-
peer communication in 
a module. This can 
cause pre- and post-
synthesis simulation 
mismatches and 
nondeterminism (order 
dependency) in your 
design. 
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Creating a Process in a Module 
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Defining the Sensitivity List 

•  Defining a Level-Sensitive Process 
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Defining the Sensitivity List 

•  Defining a Edge-Sensitive Process 
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Limitations for Sensitivity Lists 

•  You cannot specify both edge-sensitive and level-sensitive 
inputs in the same process for synthesis. 

•  You cannot declare an sc_logic type for the clock or other 
edge-sensitive inputs. You can declare only an sc_in<bool> 
data type. 
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Module Constructor 

•  Register processes 

•  Define a sensitivity list for an SC_METHOD 
process 
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Implementing the Module 
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Reading and Writing Ports and Signals 
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Reading and Writing Bits of Ports and Signals 
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Signal and Port Assignments 
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Variable Assignment 
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Creating a Module With a Single SC_METHOD 
Process  
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Creating Module With Single SC_METHOD 
Process  
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Final issues 

•  Come by my office hours (right after class)  

•  Any questions or concerns?  


