
1

EEL 4783: Hardware/Software Co-design
with FPGAs

Lecture 8: Short Introduction to Verilog
*

Prof. Mingjie Lin

* Beased on notes of Turfts lecture

2

Overview

•  Recap + Questions?
•  What is a HDL? Why do we need it? (simplified view)

–  Guess?

•  Verilog (?)
–  History
–  Impact
–  Huge potential for research (surprise)

•  VHDL
•  Verilog vs. VHDL

3

HDL (Hardware Description Language)

•  HDL is a language used to describe a digital system,
for example, a computer or a component of a
computer.

•  Most popular HDLs are VHDL and Verilog
–  Exotic ones: bluespec, …

•  Verilog programming is similar to C programming

•  VHDL programming is similar to PASCAL (some say
like Ada)
–  Is an IEEE standard

4

Levels of description

•  Switch Level
–  Layout of the wires, resistors and transistors on an IC chip

•  Gate (structural) Level
–  Logical gates, flip flops and their interconnection

•  RTL (dataflow) Level
–  The registers and the transfers of vectors of information

between registers

•  Behavioral (algorithmic) Level
–  Highest level of abstraction
–  Description of algorithm without implementation details

5

Tradeoffs between Abstraction Levels

•  Behavioral level
–  Easiest to write and debug, not synthesizable

•  Register Transfer Level
–  Synthesizable
–  Uses the concept of registers (a set of flipflops) with

combinational logic between them

•  Structural level
–  Very easy to synthesize
–  A text based schematic entry system

6

Why Do We Need HDL?

•  NO OTHER CHOICE

•  For large digital systems, gate-level design is
unmanageable

•  Millions of transistors on a digital chip

•  HDL offers the mechanism to describe, test and
synthesize large designs

7

Verilog Language

•  Describe a system by a set of modules (~functions in
C)

•  Keywords, e. g., module, are reserved and in all
lower case letters
–  Verilog is case sensitive

•  Operators (some examples)
–  Arithmetic: +, - ! ~ * /
–  Binary operators: &, |, ^, ~, !
–  Shift: << >> Relational: <, <=, >, >=, ==, !=
–  Logical: &&, ||

•  Identifiers
–  Equivalent to variable names
–  Identifiers can be up to 1024 characters

•  Comments start with a "//" for one line or /* to */
across several lines

8

Number representation

•  Numbers are specified in the traditional form of a
series of digits with or without a sign but also in the
following form
–  <size><base format><number>
–  <size>: number of bits (optional)
–  <base format>: is the single character ' followed by one of

the following characters b, d, o and h, which stand for binary,
decimal, octal and hex, respectively

–  <number>: contains digits which are legal for the
–  <base format>

•  Examples
–  ’h 8FF // hex number
–  4'b11 // 4-bit binary number 0011
–  3'b10x // 3-bit binary # with least significant bit unknown
–  -4'b11 // 4-bit two's complement of 0011, or equivalently 1101

9

Data types

•  Variables of type wires (wire) and registers (reg)
–  NOTE: A variable of type register does not necessarily

represent a physical register

•  Register variables store the last value that was
procedurally assigned

•  Wire variables represent physical connections
between structural entities such as gates (Does not
store anything, only a label on a wire)

•  The reg and wire data objects may have the following
possible values:
–  0,1,x,z (0,1,unkown, high impedance of tri-state gate)
–  “reg” variables are initialized to 0 at the start of the

simulation
–  “wire” variable not connected to something has the x value.

10

Data Types: Conceptual Differences

•  Wires/Nets represent connections between things
–  Do not hold their value
–  Take their value from a driver such as a gate or other module
–  Cannot be assigned in an initial or always block

•  Regs represent data storage
–  Behave exactly like memory in a computer
–  Hold their value until explicitly assigned in an initial or always

block
–  Never connected to something
–  Can be used to model latches, flip-flops, etc., but do not

correspond exactly
–  Shared variables with all their attendant problems

11

Program structure

•  A digital system as a set of modules

•  Each module has an interface to other module
(connectivity)

•  GOOD PRACTICE: Place one module per file (not a
requirement)

•  Modules run concurrently

•  Usually there is a top level module which invokes
instances of other modules

12

Module

•  Represent bits of hardware ranging from simple gates
to complete systems, e. g., a microprocessor

•  Specified behaviorally, RTL, or structurally
•  The structure of a module is the following:

 module <module name> (<port list>);
 <declarations>
 <module items>
 endmodule

13

example: NAND gate

14

Instance of a module

15

Structural example: AND gate

16

Continuous vs. procedural assignments

17

Events

18

Model of a D-Flip flop

19

Control constructs

20

VHDL

•  NOT: Very Hard Difficult Language
•  VHSIC Hardware Description Language + VHSIC

(Very High Speed Integrated Circuits)
•  Benefits

–  VHDL is a programming language that allows one to model
and develop complex digital systems in a dynamic
envirornment.

–  Object Oriented methodology for you C people can be
observed -- modules can be used and reused.

–  Allows you to designate in/out ports (bits) and specify
behavior or response of the system.

21

Verilog vs. VHDL

•  Verilog and VHDL are comparable languages
•  VHDL has a slightly wider scope
•  System-level modeling
•  Exposes even more discrete-event machinery
•  VHDL is better-behaved
•  Fewer sources of nondeterminism (e.g., no shared

variables)
•  VHDL is harder to simulate quickly
•  VHDL has fewer built-in facilities for hardware

modeling
•  VHDL is a much more verbose language
•  Most examples don’t fit on slides

•  See supplementary document

22

Final issues

•  Come by my office hours (right after class)

•  Any questions or concerns?

