
1

EEL 4783: Hardware/Software Co-design
with FPGAs

Lecture 5: Digital Camera: Software Implementation*

Prof. Mingjie Lin

* Some slides based on ISU CPrE 588

2

Design

•  Determine system’s architecture
–  Processors

•  Any combination of single-purpose (custom or standard) or general-
purpose processors

–  Memories, buses
•  Map functionality to that architecture

–  Multiple functions on one processor
–  One function on one or more processors

•  Implementation
–  A particular architecture and mapping
–  Solution space is set of all implementations

•  Starting point
–  Low-end general-purpose processor connected to flash memory

•  All functionality mapped to software running on processor
•  Usually satisfies power, size, and time-to-market constraints
•  If timing constraint not satisfied then later implementations could:

– use single-purpose processors for time-critical functions
–  rewrite functional specification

3

Implementation 1

•  Low-end processor could be Intel 8051 microcontroller
•  Total IC cost including NRE about $5
•  Well below 200 mW power
•  Time-to-market about 3 months
•  However, one image per second not possible

–  12 MHz, 12 cycles per instruction
•  Executes one million instructions per second

–  CcdppCapture has nested loops resulting in 4096 (64 x 64) iterations
•  ~100 assembly instructions each iteration
•  409,000 (4096 x 100) instructions per image
•  Half of budget for reading image alone

–  Would be over budget after adding compute-intensive DCT and
Huffman encoding

4

Implementation 2

•  CCDPP function implemented on custom single-purpose processor
–  Improves performance – less microcontroller cycles
–  Increases NRE cost and time-to-market
–  Easy to implement

•  Simple datapath
•  Few states in controller

•  Simple UART easy to implement as single-purpose processor also
•  EEPROM for program memory and RAM for data memory added as

well

8051

UART CCDP
P

RAM EEPRO
M

SOC

5

Microcontroller

•  Synthesizable version of Intel 8051
available
–  Written in VHDL
–  Captured at register transfer level

(RTL)
•  Fetches instruction from ROM
•  Decodes using Instruction Decoder
•  ALU executes arithmetic operations

–  Source and destination registers
reside in RAM

•  Special data movement instructions
used to load and store externally

•  Special program generates VHDL
description of ROM from output of C
compiler/linker

To External Memory Bus

Controller

4K ROM

128

RAM

Instruction
Decoder

ALU

Block diagram of Intel 8051 processor core

6

UART

•  UART in idle mode until invoked
–  UART invoked when 8051 executes

store instruction with UART’s enable
register as target address

•  Memory-mapped communication
between 8051 and all single-purpose
processors

•  Lower 8-bits of memory address for
RAM

•  Upper 8-bits of memory address for
memory-mapped I/O devices

•  Start state transmits 0 indicating start of
byte transmission then transitions to Data
state

•  Data state sends 8 bits serially then
transitions to Stop state

•  Stop state transmits 1 indicating
transmission done then transitions back to
idle mode

invoked

I = 8

I < 8

Idle:

I = 0

Start:
Transmit

LOW

Data:
Transmit
data(I),
then I++

Stop:
Transmit

HIGH

FSMD description of UART

7

CCDPP

C = 64

C < 64

R = 64 C = 66

invoked

R < 64

C < 66

Idle:

R=0

C=0

GetRow:

B[R][C]=Pxl

C=C+1

ComputeBias:

Bias=(B[R][11] +
B[R][10]) / 2

C=0

NextRow:

R++

C=0 FixBias:

B[R][C]=B[R][C]-Bias

FSMD description of CCDPP

•  Hardware implementation of zero-bias
operations

•  Interacts with external CCD chip
–  CCD chip resides external to our SOC mainly because

combining CCD with ordinary logic not feasible
•  Internal buffer, B, memory-mapped to 8051
•  Variables R, C are buffer’s row, column

indices
•  GetRow state reads in one row from CCD to

B
–  66 bytes: 64 pixels + 2 blacked-out pixels

•  ComputeBias state computes bias for that
row and stores in variable Bias

•  FixBias state iterates over same row
subtracting Bias from each element

•  NextRow transitions to GetRow for repeat of
process on next row or to Idle state when all
64 rows completed

8

Connecting SOC Components

•  Memory-mapped
–  All single-purpose processors and RAM are connected to 8051’s memory bus

•  Read
–  Processor places address on 16-bit address bus
–  Asserts read control signal for 1 cycle
–  Reads data from 8-bit data bus 1 cycle later
–  Device (RAM or SPP) detects asserted read control signal
–  Checks address
–  Places and holds requested data on data bus for 1 cycle

•  Write
–  Processor places address and data on address and data bus
–  Asserts write control signal for 1 clock cycle
–  Device (RAM or SPP) detects asserted write control signal
–  Checks address bus
–  Reads and stores data from data bus

9

Software

10

Analysis

Power

VHDL
simulator

VHDL VHDL VHDL

Execution time

Synthesis
tool

gates gates gates

Sum gates

Gate level
simulator

Power
equation

Chip area

Obtaining design metrics of interest

•  Entire SOC tested on VHDL simulator
–  Interprets VHDL descriptions and

functionally simulates execution of
system

•  Recall program code translated to
VHDL description of ROM

–  Tests for correct functionality
–  Measures clock cycles to process

one image (performance)
•  Gate-level description obtained

through synthesis
–  Synthesis tool like compiler for

SPPs
–  Simulate gate-level models to

obtain data for power analysis
•  Number of times gates switch from

1 to 0 or 0 to 1
–  Count number of gates for chip

area

11

Implementation 2 (cont.)

•  Analysis of implementation 2
–  Total execution time for processing one image:

•  9.1 seconds

–  Power consumption:
•  0.033 watt

–  Energy consumption:
•  0.30 joule (9.1 s x 0.033 watt)

–  Total chip area:
•  98,000 gates

12

Implementation 3

•  9.1 seconds still doesn’t meet performance constraint
of 1 second

•  DCT operation prime candidate for improvement
–  Execution of implementation 2 shows microprocessor

spends most cycles here
–  Could design custom hardware like we did for CCDPP

•  More complex so more design effort

–  Instead, will speed up DCT functionality by modifying
behavior

13

DCT Floating-Point Cost

•  Floating-point cost
– DCT uses ~260 floating-point operations per pixel

transformation
– 4096 (64 x 64) pixels per image
– 1 million floating-point operations per image
– No floating-point support with Intel 8051

•  Compiler must emulate
– Generates procedures for each floating-point operation

•  mult, add
– Each procedure uses tens of integer operations

– Thus, > 10 million integer operations per image
– Procedures increase code size

•  Fixed-point arithmetic can improve on this

14

Fixed-Point Arithmetic

•  Integer used to represent a real number
–  Constant number of integer’s bits represents fractional portion of

real number
•  More bits, more accurate the representation

–  Remaining bits represent portion of real number before decimal
point

•  Translating a real constant to a fixed-point representation
–  Multiply real value by 2 ^ (# of bits used for fractional part)
–  Round to nearest integer
–  E.g., represent 3.14 as 8-bit integer with 4 bits for fraction

•  2^4 = 16
•  3.14 x 16 = 50.24 ≈ 50 = 00110010
•  16 (2^4) possible values for fraction, each represents 0.0625 (1/16)
•  Last 4 bits (0010) = 2
•  2 x 0.0625 = 0.125
•  3(0011) + 0.125 = 3.125 ≈ 3.14 (more bits for fraction would increase

accuracy)

15

Fixed-Point Arithmetic Operations

•  Addition
–  Simply add integer representations
–  E.g., 3.14 + 2.71 = 5.85

•  3.14 → 50 = 00110010
•  2.71 → 43 = 00101011
•  50 + 43 = 93 = 01011101
•  5(0101) + 13(1101) x 0.0625 = 5.8125 ≈ 5.85

•  Multiply
–  Multiply integer representations
–  Shift result right by # of bits in fractional part
–  E.g., 3.14 * 2.71 = 8.5094

•  50 * 43 = 2150 = 100001100110
•  >> 4 = 10000110
•  8(1000) + 6(0110) x 0.0625 = 8.375 ≈ 8.5094

•  Range of real values used limited by bit widths of possible resulting
values

16

Fixed-Point CODEC

•  COS_TABLE gives 8-bit fixed-point representation of cosine values

•  6 bits used for fractional portion

•  Result of multiplications shifted right by 6

17

Code

18

Implementation 3 (cont.)

•  Analysis of implementation 3
– Use same analysis techniques as implementation 2
– Total execution time for processing one image:

•  1.5 seconds

– Power consumption:
•  0.033 watt (same as 2)

– Energy consumption:
•  0.050 joule (1.5 s x 0.033 watt)
•  Battery life 6x longer!!

– Total chip area:
•  90,000 gates
•  8,000 less gates (less memory needed for code)

19

Implementation 4

8051

UART CCDPP

RAM EEPROM

SOC
CODEC

•  Performance close but not good enough
•  Must resort to implementing CODEC in hardware

–  Single-purpose processor to perform DCT on 8 x 8 block

20

CODEC Design

•  4 memory mapped registers
–  C_DATAI_REG/C_DATAO_REG used to push/pop 8 x 8 block into

and out of CODEC
–  C_CMND_REG used to command CODEC

•  Writing 1 to this register invokes CODEC
–  C_STAT_REG indicates CODEC done and ready for next block

•  Polled in software
•  Direct translation of C code to VHDL for actual hardware

implementation
–  Fixed-point version used

•  CODEC module in software changed similar to UART/CCDPP

21

Code

22

Implementation 4 (cont.)

•  Analysis of implementation 4
– Total execution time for processing one image:

•  0.099 seconds (well under 1 sec)

– Power consumption:
•  0.040 watt
•  Increase over 2 and 3 because SOC has another

processor

– Energy consumption:
•  0.00040 joule (0.099 s x 0.040 watt)
•  Battery life 12x longer than previous implementation!!

– Total chip area:
•  128,000 gates
•  Significant increase over previous implementations

23

•  Implementation 3
– Close in performance
– Cheaper
– Less time to build

•  Implementation 4
– Great performance and energy consumption
– More expensive and may miss time-to-market window

•  If DCT designed ourselves then increased NRE cost and time-
to-market

•  If existing DCT purchased then increased IC cost
•  Which is better?

Summary of Implementations

24

Summary

•  Digital camera example
– Specifications in English and executable language
– Design metrics: performance, power and area

•  Several implementations
– Microcontroller: too slow
– Microcontroller and coprocessor: better, but still

too slow
– Fixed-point arithmetic: almost fast enough
– Additional coprocessor for compression: fast

enough, but expensive and hard to design
– Tradeoffs between hw/sw – one of the main

lessons of this course!

25

Final issues

•  Come by my office hours (right after class)

•  Any questions or concerns?

