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1.0 Introduction 
 
In the past few years, the use of images on computers has increased dramatically.  Today electronic cam- 
eras are common, and everyone has received e-mail or viewed websites that contained images.  Since 
transmitting bits still takes time, there is a need to compress the data in images to make them easier to 
store and transmit.  There are a number of standards that have been created, and this project is going to 
look at a part of the JPEG standard.  JPEG stands for Joint Photographic Experts Group, which defines a 
compression/decompression standard for still-life images.  The JPEG standard is used in downloading 
graphics from the internet, in digital cameras, in medical imaging tools, and in many other interesting 
applications.  Since the goal of this class is to teach you about VLSI design and not to make you JPEG 
experts, we are going to focus on a small portion of the algorithm-- a section called the Huffman decoder. 
Furthermore, a number of simplifications have been made to the standard to make your lives (and ours) 
easier.  We will call our simplified version of JPEG, JPEG-lite. If you don’t know much about compres- 
sion don’t panic.  We will give you the information that you need to know, and having a real application 
should make it more fun to do the project.  It also will give you some first hand experience on trying to 
figure out how to create datapaths, from stuff that does not initially look like a datapath. 

 
The next section will give a brief overview of compression, so you get the basic idea of what is going on, 
and then we will focus on the Huffman decoder, the actual project. 

 
 
1.1 JPEG Compression 

 
Reducing the number of bits in an image is easy.  What is hard is to reduce the number of bits, and not 
make the image look worse.  The key to achieving the latter is to find some representation of the image 
where much of the information is redundant, and then not to send the redundant information. 
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FIGURE 1.  JPEG Encoder Flowchart 
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Figure 1 shows the processing steps needed to create a JPEG bitstream from a grayscale image.  The 
image is divided into 8x8 blocks of 64 pixels where each pixel is represented by an 8-bit value.  These 
blocks are sent to the forward discrete cosine transform (FDCT) which translates the pixel values of each 
block into spatial frequency coefficients, the rate at which the image changes from pixel to pixel (this is 
like a fourier transform). Images typically contain high frequency coefficients at the edges of objects and 
lower frequency components most everywhere else.  Since the high-frequency components are generally 
small, often they can be approximated by zero with little error. The output of the FDCT transform are 64 
values, which are arranged as another 8x8 block of values, with the  DC coefficient  (average value in the 
block) in the top-left corner and the highest-frequency coefficient at the bottom-right corner.  Because 
edges are a small percentage of an image, most FDCT’s contain a large fraction of image energy in the 
DC and low-frequency coefficients. 

 
In the quantization processing step, each of the 64 coefif cients in the FDCT block are divided by values in 
a table in order to increase the number of zero-value coefficients and to reduce the size of the JPEG bit- 
stream.  Since the goal of quantization is to compress the image as much as possible, most of the loss in 
quality of the image occurs in this stage. 

 
After this step, we have the values we want to transmit.  The challenge is to transmit them using the least 
number of bits.  One way of doing this is to use a  Huffman code.  The basis idea of Huffman codes is 
simple -- we don’t need to transmit the number we want; instead,  we can just transmit a code for that 
number.  A table associating the number and its code is sent first to the decoder.  Then, to send the num- 
ber you want, you only need to send its code. This would not make much sense if the index was as large 
as the number, but usually you can make the index shorter.  In fact, in Huffman codes,  numbers that 
occur with the higher frequencies get assigned shorter codes.  The  less common numbers get assigned 
longer codes.  Since all codes are not the same length, you also need to know how long your code is.  The 
variable length is what makes Huffman codes tricky, as we will see in the project. 

 
JPEG encoding compresses data  in four ways: 

 

• Because DC coefficients do not change significantly between adjacent  blocks, they are encoded as dif- 
ferences. (Diff = DCi - DCi-1) This coding technique is known as Differential Pulse Code Modulation 
(DPCM). 

 

• Quantized AC coefficients usually contain a run of consecutive zeroes.  For this reason AC codes 
specify the run-length (number of consecutive zeroes preceding a non-zero coefficient) in addition to 
the amplitude of the coefficient. 

 

• An end-of-block (EOB) code compresses data by indicating that the data in the rest of the scan are 
zeroes. 

 

• Variable-length Huffman codes are selected such that shorter codes are used for frequently occurring 
run-length/coefficient sizes and longer codes are used for less-frequently occurring run-length/coeffi- 
cient sizes.  There is a unique Huffman code for each combination of run-length and coefficient size. 
There are separate tables for AC and DC Huffman codes because they exhibit different characteristics. 
(These terms will be defined later, so don’t worry about these now.) 
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FIGURE 2. JPEG Decoder Flowchart 
 
Figure 2 shows a JPEG decode flowchart.  The JPEG bitstream contains the image size, dequantization 
tables, Huffman AC tables, Huffman DC tables, Huffman encoded data, and other information needed to 
decode the image.  Huffman encoded data is decoded, multiplied by the values in the dequantization 
table, and then translated to pixel values by the inverse discrete cosine transform (IDCT).  The 8x8 pixel 
blocks are then placed together to create the decompressed image. 

 
We will look at making the Huffman decoder for the project.  JPEG-lite simplifies JPEG by doing the fol- 
lowing: 

 

• The input has been modified to 4x4 blocks as opposed to the 8x8 blocks used in the JPEG standard in 
order to reduce the layout effort of hardware elements.  (we sacrifice our compression ratio by a factor 
of 2) 

 

• A simplified Huffman table will be used by the Encoder and Decoder that contains 10-bit Huffman 
codes and allows a maximum run-length of 3.  The JPEG-baseline standard contains 16-bit Huffman 
codes and supports a maximum run-length of 15. 

 

• Only a single AC and a single DC Huffman table will be used.  In the JPEG baseline standard, two AC 
and DC tables were supported. 

 

• 1-bit Huffman codes are not allowed in JPEG-lite. 
 

• Only grayscale images will be decoded in JPEG-lite. 
 
 
2.0 Project Overview 

 
The final project will be dealing with the Huffman decoder portion of JPEG-lite.   As mentioned above in 
Section 1.0, JPEG-lite takes an image and breaks it into 4x4 blocks of 16 pixels each, and after a number 
of processing steps, places the transformed values bit-by-bit on a bitstream in the form of Huffman codes. 
Your job will be to decode the bitstream and recreate the sequence of 4x4 blocks (and thus the entire 
image)  by filling in missing portions of the verilog code which will be provided to you.  The output of 
the decoder will be taken by post-processing software which will then display the decoded (mystery) 
image. 

 
 
2.1 What’s in the Bitstream? 

 
The JPEG-lite bitstream contains many different types of information (See Appendix A).  The portion of 
the bitstream that we will be focusing on is the part that encodes the pixel values of the image.  The bit- 

 
 
 

EEL5722 Final Project, 2011 3 



stream corresponding to this portion is a sequence of Huffman code/coefficient pairs.  The following sec- 
tions will explain what the Huffman code and the coefficients are, and how they are to be decoded. 

 
 
2.2 Huffman Code Example 

 
Huffman codes are variable-length codes that compress data by representing the more-frequently occur- 
ring data with shorter codes and less-frequently occurring data with longer codes.  The following con- 
trived example will illustrate this concept. 

 
Consider the following set of numbers and their frequencies: 

 
Frequency Number Huffman code 

45 1000 00 
20 100 01 
10 10 100 
5 5 1010 
1 1 1011 

 

As you can see in the above example, if we were to transmit the actual numbers, it would take a lot of bits 
because the ones occurring most frequently have larger values.  Instead, Huffman codes are assigned to 
the numbers in the order of their frequencies, and the Huffman codes are transmitted in place of the num- 
ber.  In order to communicate the mapping between the numbers and the codes, the table containing this 
information is first sent to the decoder so that it can start decoding the Huffman codes that follow. 

 
 
2.3 What’s are JPEG-lite Huffman Codes? 

 
Whereas in our previous example, the Huffman codes were associated with the actual numbers, in JPEG, 
the Huffman codes are associated with the sizes of the numbers and their run-lengths (to be discussed 
later).  If each number were to have a unique Huffman code, we would end up with lots of Huffman 
codes, which would lead to longer code lengths.  Furthermore, the events that occur most frequently in 
the image bitstream are the sizes of the numbers, not the actual numbers.  Also, since the transformed val- 
ues of the image contain numerous runs of consecutive zero values (referred to as run-length), not having 
to pass these values improves the compression rate. Thus, JPEG’s Huffman code tells you two pieces of 
information: 1) the size of the number (coefficient) that immediately follows the Huffman code in the bit- 
stream, and 2) the run-length value.  The mapping between the Huffman codes and their coefficient size 
and run-length are stored in tables that are used by both the encoder and the decoder. 
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Definitions: 
Coefficient: Pixel value after having been transformed by the JPEG 

algorithm 
DC term:  The first coefficient in the upper-left corner. 
AC terms: The remaining coefficients in the 4x4 block. 
Coeff_size: The number of binary bits needed to represent the 

coefficient.  (0-10 bits) 
Run-length: The number of zeros preceding a non-zero coefficient. 

(Range of 0-3 zeroes allowed) 
DC Term EOB: End-of-block. If the remaining coefficients are all zero, a 

special Huffman code indicates that the end of the 4x4 block 
AC Terms has been reached. 

 
 

FIGURE 3. Example 4x4 block and Definitions 
 
There are two sets of Huffman codes, DC codes and AC codes.  DC Huffman codes are used to represent 
the first coefficient (DC term in Figure 3)  in the 4x4 block, and AC Huffman codes are used to represent 
the remaining coefficients.  Coefficients are the transformed values of the pixels in the 4x4 block.  Only 
the non-zero coefficients are explicitly passed in the bitstream which improves the compression ratio. 

 
What happens to the AC coefficients equal to zero?  The notion of  run-length is used to take care of these 
coefficients.  Run-length is defined as the number of zero coefficients preceding a non-zero coefficient. 
The zero coefficients are counted in the order the block is processed: left to right, top to bottom.  For 
example, in Figure 3 the run-length of the coefficient=2 is 1, the run-length of the coefficient=4 is 3, and 
the run-lengths of the coefficients=1 are zero.   What is the run-length of the coefif cient=5?  Looking back 
at the definition of run-length we can see that the run-length can be from 0 to 3.  Any sequence of  four 
zeroes is represented by a coefficient size of zero (implying a zero coefficient) and a run-length of three. 
Since the 4 zeroes have now been processed, the run-length of the coefficient=5 is zero. 

 
It may be observed that DC codes will always have a run-length of zero since they are the first code in the 
4x4 block.  In addition, DC coefficients are differentially encoded; in other words, the difference between 
the previous DC term and the current DC term is encoded, not the actual value of the current DC term. 
For example, if the DC coefficient in the previous 4x4 block was 12 and the current DC coefficient is 15, 
the encoded value on the bitstream is 3 (15-12). 
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1 2 11011 10 (2) 
0 1 00 1 (1) 
0 1 00 1 (1) 
0 1 00 1 (1) 
3 3 111110101 100 (4) 
3 0 111001 none 
0 3 100 101 (5) 
0 0 1010 none - EOB 
 

2.4 Encoder Example 
 
Before discussing the details of the Huffman decoder it is helpful to show an example of a 4x4 block 
encoded on a bitstream. 

 
DC Coefficient of previous block=12 

 
Run-length Coeff_size Huffman Code Coefficient 
0 2 011 11 (3=15-12) 

 
 
 
 
 
 
 
 
 
 

Bitstream = 0111111011100010010011111101011001110011001011010 
 
 

FIGURE 4. Encoder example 
 
In Figure 4, the encoded bitstream is shown for the given 4x4 block.  In following this example, use the 
Huffman Code Tables in Appendix A.  Table 1 will be explained as we go through the decoder example 
so ignore it for the moment.  To determine the Huffman code for a DC coefficient of run-length=0 and 
coeff_size=2 we look at Table 2 (DC).  The DC code that corresponds to a coeff_size of 2 is 011.  This 
Huffman code specifies that a 2-bit coefficient will follow on the bitstream.  After encoding the DC coef- 
ficient the bitstream contains 01111.  To encode the AC coefficients we follow a similar process.  Special 
attention should be given to the AC Huffman codes 111001 (4 zeroes in a row) and 1010 (EOB).  The 
end-of-block (EOB) code indicates that the remaining coefficients in the 4x4 block are zeroes.  In both 
cases, the coeff_size is zero so a coefficient is not placed on the bitstream after the Huffman code. 

 
 
3.0 Huffman Decoder Project 

 
(This is the important part, since this is the stuff you will need to build) 

 
The hard part of Huffman coded data is decoding it.  The encoded bitstream in Section 2.4 appears to be 
a random string of 0’s and 1’s.  The difficulty in decoding the bitstream arises in determining how long a 
Huffman code is (remember that Huffman codes are variable-length).  Fortunately, the JPEG standard 
provides a clever algorithm that  takes advantage of the way in which Huffman codes are created.  All 
Huffman codes must adhere to the following rule: 

 
The most significant (n-1) bits of the smallest Hufman code of length n are greater 
in value than the largest Huffman code of length (n-1). 

 
For example, the smallest AC Huffman code of length 5 is 11010 and the greatest AC Huffman code of 
length 4 is 1100.  It is easily seen that the most significant 4 (n-1) bits of the Huffman code of length 5 
(1101) are greater than the greatest Huffman code of length 4 (1100).  If the smallest code of length 5 
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were 11000, it would be ambiguous because it cannot be distinguished from the Huffman code 1100 of 
length 4. 

 
In other words, you can always tell how long a code word should be by assuming its current length is its 
final length.  You make this guess, and look up in a table (lookup table 1) for what the max code word is 
of this length.  If the value you have is less than the max value in the table, you are correct, and you have 
a valid code.  If not (if the code word you have so far is lagr er than the max value for this length) the code 
word is at least one bit longer, and you have to shift in another bit and try again.  The algorithm in  Figure 
5 does exactly this, but it does one more thing as well.  Once we know the length, we still need to lookup 
the actual value (the variable length data is really only an index).  The actual value that we look up in 
lookup table 2 is the coefficient size and the runlength. 

 
The index to the lookup table 2 is calculated by adding an offset (base) to the code word that has been 
identified above. 

 

Huffman Code Identification Algorithm 
 
 

code_length = 0 
bits = 0 

Example: 
DC Huffman code = 011 

 
 
 

code_length = code_length + 1 
 
 
 
 

bits = (SLL bits 1) + nextbit 
maxcode, base <- Table1[code_length] 

 
 
 
 
 

 
 
 
 
 

Yes 

table2_addr = base + bits 
 
 
 
 
 

(code_length == 1) || 
(bits > maxcode) 

 
 
Note that the maxcode and base are undefined when the 
code_length == 1. 

 
 

No 
 

coeff_size, run_length <- Table2[table2_addr] 
 
 
 

FIGURE 5. Huffman Code Identification 
 
The above flowchart provides an overall picture of how the Huffman codes are recognized and how the 
coefficient size and the run-length corresponding to the Huffman code are retrieved. 

 
 
 
 

EEL 4783 Project 2, 2011 7 



In the initial state, code_length and bits are initialized to zero. (bits is a shift register used to receive the 
JPEG bitstream, and code_length counts the number of bits that have been shifted into bits.) 

 
The middle 4 steps comprise a loop.  First, the code_length counter is incremented.  Then, the next bit is 
shifted into bits, and maxcode and base are looked up in Table 1.  Maxcode is the maximum Huffman 
code for a given Huffman code_length and base is used to speculatively compute the index (table2_addr) 
for Table 2 (see Appendix A). Finally, a check is made to see whether bits > maxcode  or code_length is 
one (there is no Huffman code of length one). If so, we know that bits does not match any Huffman code 
of length code_length so we need to keep iterating through the loop. 

 
If bits is less than or equal to maxcode, a valid Huffman code has been found and a lookup is performed 
on Table 2 using table2_addr to retrieve the coeff_size and run_length for this Huffman code. 

 
The example above shows how a Huffman code of 011 is recognized.  The bits shifted in from the bit- 
stream are displayed in bold font.  The values for each iteration through the loop is shown until we find a 
valid Huffman code and its corresponding coeff_size and run_length. 

 
 
4.0 The Big Picture 

 
After all this talk about definitions and algorithms you are probably wondering how all these pieces fit 
together.  The top-level diagram of the Huffman decoder is shown below in Figure 6.  The inputs to the 
Huffman Decoder are the bitstream, initialization signals, and a reset signal.  The initialization signals are 
used to initialize the lookup tables (maxcode,base, run_length, and coeff_size). 

 
The output of the Huffman Decoder is the block number, the coefficient, the position within the block and 
a signal specifying that the coefficient and position are valid.  The coefficient has already been defined as 
the pixel value transformed by the JPEG-lite algorithm and the position is a number from 0-15 which 
specifies the location within the 4x4 block as shown below.  The output is used by the post-processing 
software that transforms the coefficients back into their original pixel values so that they can be viewed as 
a digital image. 

 

Inputs Outputs Software Post-processing 
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FIGURE 6. The Big Picture 
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4.1 Verilog Hierarchy 
 

The Huffman decoder’s top-level verilog, top.v,  contains 4 sub-units: stimulus.v, datapath.v, control.v, 
and writeoutput.v.  Stimulus.v and Writeouput.v are complete and do not need to be modified.  You need 
to implement the Huffman Code Identification Algorithm in datapath.v and the finite-state machine in 
control.v.  The interactions between these units are shown below in Figure 7. 
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image.dat 
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table2.dat 
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JPEG bitstream 

initialization 
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datapath.v control.v 
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run_length_s2, 

 
 
 

clkgen.v 

 
coefficient_s2 

coeff_size_s2 
 
 
writeoutput.v 

position_s2 
valid_s2 

 

 
huff_dec.out 

 
 
 

FIGURE 7. Verilog Hierarchy 
 
Stimulus.v provides the input signals to the Huffman decoder.  It receives its inputs from three files: 
image.dat, table1.dat and table2.dat.  Table1.dat and table2.dat contain the necessary information to ini- 
tialize the lookup tables used in the datapath.  After initialization, stimulus.v sends bits from image.dat to 
datapath.v as the JPEG bitstream. 

 
Datapath.v contains the lookup tables, the shift register and other hardware elements needed to imple- 
ment the Huffman Code Identification Algorithm described in Section 3.0.  The primary inputs are the 
JPEG bitstream from stimulus.v, and control signals from control.v that reset and initialize the shift regis- 
ter and code_length counter.  These control signals will be discussed in more detail in Section 5.2.  The 
primary outputs of datapath.v are match_s1, run_length_s2, coeff_size_s2, and coefficient_s2. 
Match_s1=1 indicates that a complete Huffman code has been shifted in from the JPEG bitstream.  The 
results of the table2 lookup: run_length_s2 and coeff_size_s2, provide information to the control about 
the run_length and size of the coefficient that follow the Huffman code in the JPEG bitstream. 
Coefficient_s2 contains the bits that are currently in the datapath shift register.  The block diagram of the 
datapath is contained in Section 6.1 

 
Control.v contains a finite state machine, logic that counts how many coefficient bits have been shifted 
into the datapath shift register, and logic that calculates position_s2.  The FSM will be described in more 
detail in Section 5.1.  The primary inputs are match_s1, run_length_s2, and coeff_size_s2.  The control 
block’s primary outputs are position_s2, valid_s2 and control signals needed by the datapath (see Section 
5.2). As described above, position_s2 indicates the location within the 4x4 block and valid_s2 is asserted 
when the entire coefficient has been shifted in from the bitstream. 
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Writeoutput.v takes coefficient_s2, position_s2, and writes them to the file, huff_dec.out, when valid_s2 
is high.  This is the file that is used by the post-processing software to transform the coefifcients into pixel 
values.  The output format of the file is as follows: <4x4 block number><coefficient><position>.  This 
file may be useful as you’re debugging your verilog. 

 
 
5.0 Huffman Decoder Control 

 
 
5.1 Finite State Machine 

 
The FSM (finite-state machine) keeps track of which part of the 4x4 block is being decoded and sets the 
control signals accordingly.  The six states shown in Figure 8 are idle, init, dc_decode, dc_coeff, 
ac_decode, and ac_coeff.  You will need to implement this FSM in control.v. 

 
 

idle 
 

1 
 
 

init 

 
 
reset_s1 = 1 

 
reset_s1 = 0 

 
dc_decode Else 

 
 
 

(valid_s1 && position = 15) || 

match_s1 && code_length != 1 

EOB dc_coeff Else 

 
valid_s1 || zero-length coefficient 

 
 

ac_decode Else 

 
match_s1 && code_length != 1 

 
 

(valid_s1|| zero-length coefficient) && 
!EOB && position !=15 

 
ac_coeff 

Else 

 

 
 

FIGURE 8. Finite State Machine 
 
The decoder remains in the init state until reset_s1 goes low.  During this state the lookup tables are ini- 
tialized.  After reset_s1 goes low, the next state is dc_decode and the DC Huffman code of the first entry 
in the 4x4 block is decoded. 

 
The FSM remains in the dc_decode state until match_s1 goes high and code_length !=1.  Match_s1 goes 
high when the Huffman code length has been determined. (match_s1 = bits <= maxcode)  Remember that 
match_s1 is not valid when code_length = 1 because maxcode(code_length ==1) is undefined. Hint: 
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reset_sr_s1 is only high when code_length = 1 and may be used to qualify match_s1.  (reset_sr_s1 is fur- 
ther described in Section 5.2) 

 
Once the Huffman code length is been determined, the next state is dc_coeff.  In this state the DC coeffi- 
cient is read into the datapath shift register.  If the coefficient has been read from the bitstream (valid_s1 
= 1) or if the coefficient is zero-length then the next state is set to ac_decode.  Hint:  coeff_size_s2 and 
run_length_s2 are only valid one cycle after match_s1 goes high.  (see Section 3.0) 

 
The ac_decode state is very similar to dc_decode.  Once the Hufman code_length is been determined the 
next state is set to ac_coeff. 

 
The ac_coeff state is where things get a bit tricky.  If the AC coefficient is zero or the coefficient is read 
from the bitstream then the next state may be either dc_decode or ac_decode.  If the end of the 4x4 block 
is reached (position = 15) or the remaining AC coefficients are zero (EOB) then the next state is 
dc_decode  and a new 4x4 block is started.  If the coefficient is read from the bitstream and the end of the 
4x4 block is not reached (position < 15) then the next state is ac_decode. 

 
 
5.2 Control Signal Description 

 
Understanding the functionality of the following control signals should help you design the datapath and 
debug your verilog. 

 

Output 
reset_sr_s2: This signal resets the bitstream shift register and the code_length shift register in the 

datapath before a new Huffman code or coefficient is read from the bitstream.  The 
reset_sr_s2 signal is not asserted when the coeff_size is zero or the EOB code is placed on the 
bitstream. 

dc_ac_s1: This signal selects whether the AC or DC Table 1 values are selected.  The ac table is 
selected when dc_ac_s1=1 and the dc table is selected when dc_ac_s1=0. 

rw1_en_s1: This signal is zero when table1 is read and 1 when table 1 is written to. 
rw2_en_s1:  This signal is zero when table2 is read and 1 when table 2 is written to. 
valid_s2: This signal indicates that the outputs, coefficient_s2 and position_s2, are valid. 

 
Input 
match_s1: This signal is 1 when the Huffman code-length is determined (bits <= maxcode) and it is 

sampled by the control during the ac_decode or dc_decode state when code_length is greater 
than 1. 

coeff_size_s2: This signal describes the coefficient length (in number of bits) and is only valid for 
one cycle after the complete Huffman code has been read from the bitstream 

run_length_s2: This signal describes the run_length of a non-zero coefficient and is only valid for 
one cycle after the complete Huffman code has been read from the bitstream. 
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6.0 Detailed Datapath Information 
 
 
6.1 Datapath Block Diagram 

 
 
 
 
 

rw1_en_s1 rw2_en_s1 
Lookup Table 1 

 
Lookup Table 2 

coeff_size_s2 

maxcode_v1 

base_v1 

dc_ac_s1 

 
 
 
 
 
 
 
 
code_length counter 

maxcode_s2 
L 
 
 
L base_s2 

 

coeff_size_v1 

run_length_v1 

 

 
L 

L 
 
 
L 
 
run_length_s2 

 
 

reset_sr_s2 
 

bitstream_s1 
L 

 
match_s1 

 
 

coefficient_s2 
L 

 
 
 
 
 
 
 
 
6.2 Timing Information 

 
Your implementation of the datapath’s Huffman Code Identification Algorithm must adhere to the timing 
shown below: 
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Read 1st bit Read 2nd bit Read 1st bit   Read 2nd bit Read 1st bit Read 2nd bit Read 3rd bit Read 4th  b 

 
phi1 

 

 
 

phi2 
 
 

reset_sr_s2 
 
 

match_s1 Invalid 
 
 

coeff_size_s2 Invalid Valid Invalid 
 
 

run_length_s2 
 
 

valid_s2 

Invalid Valid Invalid 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
7.0 What do I need to do? 

 
1. Download all verilog code and documents to your own computer. 

 

2. Fill in the datapath.v verilog after studying the datapath algorithm and timing section. 
 

3. Code the FSM in control.v after studying the FSM section. 
 

4. Try the test cases: test1.dat or create your own.  Each test case contains two 4x4 blocks.  Your output 
file, huff_dec.out, should match test1.out for test1.dat.  See the newsgroup or web page on instructions 
on how to create your own test case. 
• cp test1.dat to image.dat. 
• Change the variable, NUM_BITS, as shown in stimulus.v: 
• Run your favorite verilog simulator. 
• Compare huff_dec.out to test1.out for test1.dat. 
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• 
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Appendix A 
 
 
 

Physical Addr Code Length DC Maxcode DC Base AC Maxcode AC Base 
0 2 000000000 000000 000000001 001011 
1 3 000000110 111111 000000100 001001 
2 4 000001110 111000 000001100 000100 
3 5 000011110 011000 000011011 110111 
4 6 000111110 001010 000111010 011011 
5 7 001111110 001011 001110111 100000 
6 8 011111110 001100 000000000 000000 
7 9 xxxxxxxxx xxxxxx 111111100 111000 

 
 
 

Physical Addr Huffman Code Run-length Coeff Size (Hex) 
0 00 0 0 
1 010 0 1 
2 011 0 2 
3 100 0 3 
4 101 0 4 
5 110 0 5 
6 1110 0 6 
7 11110 0 7 
8 111110 0 8 
9 1111110 0 9 

10 11111110 0 A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

15 



 
 
 

Physical Addr Huffman Code Run-length Coeff Size (Hex) 
11 00 0 1 
12 01 0 2 
13 100 0 3 
14 1010 (EOB) 0 0 
15 1011 0 4 
16 1100 1 1 
17 11010 0 5 
18 11011 1 2 
19 111000 2 1 
20 111001 3 0 
21 111010 3 1 
22 1110110 0 6 
23 1110111 1 3 
24 111100000 0 7 
25 111100001 0 8 
26 111100010 0 9 
27 111100011 0 A 
28 111100100 1 4 
29 111100101 1 5 
30 111100110 1 6 
31 111100111 1 7 
32 111101000 1 8 
33 111101001 1 9 
34 111101010 1 A 
35 111101011 2 2 
36 111101100 2 3 
37 111101101 2 4 
38 111101110 2 5 
39 111101111 2 6 
40 111110000 2 7 
41 111110001 2 8 
42 111110010 2 9 
43 111110011 2 A 
44 111110100 3 2 
45 111110101 3 3 
46 111110110 3 4 
47 111110111 3 5 
48 111111000 3 6 
49 111111001 3 7 
50 111111010 3 8 
51 111111011 3 9 
52 111111100 3 A 
53 111111101 unused unused 
54 111111110 unused unused 

 
 
 
 
 
 
 
 
 

16 


