
Abstract

With increasing telemetry data rates, there is a need for
faster Reed-Solomon and Convolutional on-board encoders
than currently exist, both as self standing components and
as integrated parts of single chip telemetry systems and
custom designs. An ongoing ESA activity aims at
developing such reusable and technology independent
encoder cores in VHDL, together with a radiation hard
component replacing the discontinued MA1916 encoder.

1 INTRODUCTION

A telemetry channel is encoded to gain a higher data
throughput at the same bit error rate as for uncoded
transmission, but with less energy expended per
information bit. The encoding allows the ground segment to
perform error detection and correction on down-link data.
Reed-Solomon and Convolutional encoding have been used
widely on European spacecraft and are endorsed by
European Space Agency (ESA) and Consultative
Committee for Space Data Systems (CCSDS) standards.
The encoding is normally carried out in the telemetry
encoder of the spacecraft, just after the virtual channel
multiplexer in systems using packet telemetry.

The MA1916 Reed Solomon and Convolutional encoder
device (Ref. 6) from GEC Plessey Semiconductor (GB) has
been flown on several spacecraft (e.g. SOHO) and will
further be used on XMM and Integral. With the
manufacturing of the MA1916 device being discontinued,
several ongoing spacecraft developments have been left
without an alternative replacement. The development of a
new encoder named RESCUE has therefore been initiated.
This new encoder could be utilised on commercial and
scientific spacecraft such as Cobras/Samba and Rosetta.

Instead of directly developing an encoder device for a
specific technology, it has been decided first to develop
reusable encoder cores. As a second step, a device based on
these cores will be developed and will be supported as an
Application Specific Standard Product (ASSP) by the
foundry. This approach has several advantages over the
more classical way of designing, e.g. the intermediate
output from the core development can be reused in future
designs. There is however an increased effort when
compared with classical design methods, since with cores
being intended for reuse, requirements on verification and
documentation tend to become tighter. Specifying the
encoder core functionality involved little effort, since few
system requirements covering aspects such as suitable and
flexible interfaces etc. needed to be considered at that stage.
The more difficult task of specifying the ASSP can now
commence while the encoder cores are being developed.

The objective of the core development is to create
technology independent Reed-Solomon and Convolutional
encoders adhering to the ESA and CCSDS standards. These
cores will be modelled in synthesizable VHDL (Very high
speed integrated circuit Hardware Description Language).
Each core will be fully synchronous with a single clock
region and without gated clocks, featuring no combinatorial
or feedback loops. The radiation hard MITEL CMOS/SOS5
process will be used when demonstrating the
implementability of the cores. This core development will
be finalised during 1Q97 with the main output being:
• synthesizable VHDL models (also for simulation);
• test benches with 100% code coverage;
• production test vectors with 98% fault coverage;
• functional specifications and user manuals.

The intention is to use the encoder cores as a virtual second
source for the RESCUE device or other devices that will
incorporate them, allowing fast transfer to another foundry
if necessary. They are not intended for general use, but
could be included in products where the agency believes
they fit, e.g. in a single chip telemetry encoder.

Initial VHDL models of the encoder cores were developed
by ESA. Further development is performed by Smartech
(SF) under the prime contractor Dornier Satellitensysteme
(D). Dornier will also perform extensive verification of the
VHDL models versus the existing MA1916 device. These
encoder cores are further discussed in sections 3 and 4.

This consortium together with MITEL Semiconductors (S)
is also envisaged for the RESCUE device development, as
further discussed in sections 5 through 7.

2 APPLICABLE STANDARDS

To ensure that the Reed-Solomon encoder being developed
will be compliant with the existing standards, a review of
the relevant ESA and CCSDS documents has been carried
out. The encoder shall generate codewords according to the
ESA Telemetry Channel Coding standard (Ref. 1). This
standard specifies a block code with 8 bits per symbol, 255
symbols per codeword: first 223 symbols being the
information symbols and last 32 symbols forming the check
symbols. Shortened codewords lengths may be obtained
using virtual fill. Implicitly, the CCSDS Telemetry Channel
Coding standard (Ref. 2) will also be supported. Although
the description of the encoding algorithm in the two
standards differs, the same code is specified. This has been
reconfirmed both analytically and through VHDL
simulation. There are however some differences between
the two standards concerning the allowed interleave depths.
The ESA standard permits interleave depths 1 to 5 and 8,
whereas the CCSDS standard only allows 1 to 5.

A CCSDS REED-SOLOMON ENCODER CORE AND RADIATION HARD DEVICE

Sandi Habinc

European Space Agency, ESTEC WSM, Postbus 299, 2200 AG Noordwijk, The Netherlands
sandi@ws.estec.esa.nl

Furthermore, the ESA Packet Telemetry Standard (Ref. 3)
allows the standard transfer frame lengths with 892, 1115
and 1784 octets when using Reed-Solomon encoding,
corresponding to interleave depths 4, 5 and 8. The CCSDS
Packet Telemetry standard (Ref. 4) allows the same
interleave depths 1 to 5 as in (Ref. 2). Also, the CCSDS
Advanced Orbiting Systems standard (Ref. 5) allows
interleave depths 1 to 5. It allows shortening of codeword to
accommodate compatibility with 32 bit microprocessor
systems, where the allowed number of suppressed symbols
must be a multiple of the selected interleave depth.

Moreover, the existing MA1916 device implements
interleave depths 1, 4 and 5, according to (Ref. 6), and the
Virtual Channel Multiplexer (VCM) device supports
interleave depths 1, 2, 4 and 5, according to (Ref. 7).

By supporting interleave depths 1 to 8 and virtual fill with
the number of suppressed symbols being a multiple of the
interleave depth, the above standards and devices can all be
covered by a single encoder core.

3 REED-SOLOMON ENCODER CORE

The Reed-Solomon encoder core being developed is
targeted towards systems with low to medium data rates. It
is a physically small core that will be suitable for future
single chip telemetry systems where a small silicon area is
a major requirement. The encoder core is also suitable for
deep-space missions since the chosen architecture allows
implementations with low power consumption and great
interleave depths.

The encoder core implements a coding algorithm compliant
with (Ref. 1):

• there are 8 bits per symbol;

• there are 255 symbols per codeword;

• the encoding is systematic: the first 223 symbols
transmitted are information symbols, and the last 32
symbols transmitted are check symbols;

• the code can correct up to 16 symbol errors and detect
up to 16 symbol errors;

• the field polynomial is

• the code generator polynomial is

with the highest power ofx being transmitted first;

• interleaving is supported for depthI in range 1 to 8,
where information symbols are encoded asI codewords
with symbol numbersi + j* I belonging to codewordi
{where 0≤ i < I and 0≤ j < 255};

• shortened codeword lengths are supported, allowing
suppression of a number of information symbols
equalling to any multiple of the selected interleave
depth, where such suppressed symbols are assumed to
be in the beginning of the codewords;

• the encoder input and output data are in a representation
specified by the following transformation matrix

whereι0 is transferred first, and with the following matrix
specifying the reverse transformation

The encoder core generates Reed-Solomon codewords by
receiving information symbols that are transmitted
unmodified while calculating the corresponding check
symbols that in their turn are transmitted after the
information symbols. A diagram of the encoder core is
shown in figure 2, which is directly mapping to the
functional blocks of a linear feedback shift register
implementing the encoding algorithm as shown in figure 1.

Figure 1: Reed-Solomon encoder logic

f x() x
8

x
6

x
4

x
3

x
2

x 1+ + + + + +=

g x() x αi
+()

i 112=

143

∏ gj x
j⋅

j 0=

32

∑= =

ι0 ι1 ι2 ι3 ι4 ι5 ι6 ι7 α7 α6 α5 α4 α3 α2 α1 α0

0 1 1 1 1 0 1 1

0 1 1 1 1 0 0 1

0 0 1 0 1 0 1 1

0 0 1 1 1 1 1 1

0 0 0 0 1 0 0 1

1 0 0 0 0 1 1 1

0 1 0 1 1 1 1 1

0 0 1 1 0 1 1 1

×=

α7 α6 α5 α4 α3 α2 α1 α0 ι0 ι1 ι2 ι3 ι4 ι5 ι6 ι7=

1 1 1 0 1 1 0 1

0 1 0 1 1 1 1 1

0 0 0 1 0 1 1 1

0 1 0 1 1 0 1 0

1 0 0 0 1 0 0 0

0 1 0 1 0 1 1 0

0 0 0 0 0 0 1 1

1 0 0 1 1 0 0 0

×

1 x xr-1

s

s’

a(x)

c(x) = a(x)xn-k+r(x)

g0 g1 gr-1

&

Information symbol input stream

Codeword symbol output stream

01

Check symbol calculation is independent of any previous
codewords and correct codeword calculation can therefore
begin immediately at the reception of the first information
symbol after power-up. No explicit initialisation, such as
resetting the check symbol memory elements, is required
before correct operation can commence. This is achieved by
suppressing the feedback from the check symbol memory
or the multiplier when data are assumed to be zero.

To circumvent the effects of heavy particles when not
manufactured in a radiation hard process, the control logic
is reset and re-synchronised for each codeword. These
implementation features will confine any error due to Single
Event Upsets (SEU) to the affected codeword. Furthermore,
the core does not require the value of the input symbols to
be zero while check symbols are transmitted, being the case
with some previous encoder designs.

The encoder core does not generate the Attached
Synchronisation Marker specified in (Ref. 1). Instead, it has
a means for bypassing the check symbol calculation and
receiving and transmitting symbols without modifications.

The core does not include a Pseudo Randomiser (Ref. 1),
since the necessary circuitry can be easily implemented
outside the core if required in a specific device.

Figure 2: Reed-Solomon encoder core

The interface of the encoder core for data input and output
is serial. Data and control signals of the core are directly
compatible with the VCM output interface, reducing design
effort and gate count for additional interface circuitry if
integrating both on a single chip. All operations are made in
the Galois field defined by the field polynomial described
above. By employing the chosen architecture, resource
sharing can be maximised which leads to a smaller gate
count and area.

Translation between the two symbol representations
specified previously is implemented directly in the parallel
multiplier, which further reduces the silicon area required
for the encoder core.

The encoder core can be configured for any maximum
interleave depth Imax ranging from 1 to 8, selectable by

means of a VHDL generic. For a specific instantiation of the
encoder core, any interleave depth ranging from 1 to the
chosen Imax is supported. Also, for any selected Imax the
area of the encoder core is minimised, i.e. logic required for
implementing interleave depths greater than Imax is not
unnecessarily included in the synthesised core.

Potentially, it will be possible to select between two check
symbol memory organisations for the encoder core; one
based on latches or memory that are addressed by means of
a bit and an interleave counter; and a second one based on
flip-flops organised as synchronous serial shift registers.
The first variant should be suitable to use with foundry
specific memory macro-cells that could provide low power
consumption and further reduce the silicon area needed.

The targeted performance of the encoder core is a data rate
of 20 Mbits/s. Only a single phase clock with the same
frequency as the bit rate is required. The core will have a
gate and routing area of less than 5000 equivalent gates
when implemented in MITEL CMOS/SOS5 technology.

4 CONVOLUTIONAL ENCODER CORE

The Convolutional encoder core being developed encodes
data according to (Ref. 1) and (Ref. 2). The code has a
constraint length of 7 bits and a code rate of 1/2 bit per
symbol. It is generated by the two connection vectors
G1=1111001 and G2=1011011, with symbol inversion on
the output path of G2 and with G1 associated with the first
symbol. A diagram of such an encoder is shown in figure 3.

The encoder core is driven by a symbol clock with twice the
input bit frequency. Data are input and output
synchronously with this clock, and a second clock acts as
input bit delimiter. For each input bit two output symbols
are generated.

The targeted performance of the encoder core is a 20 Mbits/
s data input rate, corresponding to a symbol output rate of
40 Mbits/s.

Figure 3: Convolutional encoder core

Check Symbol Memory

Adder

Parallel

Control

Parallel

Serial

SerialIn
Frame
SyncMark

InterLeave0

SerialOut
FrameOut

SerialClk

InterLeave1
InterLeave2

SyncMarkOut
Symbol

MultiplierHold

Shift
Register

1 2 3 4 5 6

Input bit stream Output symbol streamG2 = 1011011

G1 = 1111001

0

Symbol 2

Symbol 1

5 RESCUE: REED-SOLOMON AND
CONVOLUTIONAL ENCODER

A new radiation hard Reed-Solomon and Convolutional
encoder is needed to replace the discontinued MA1916
device for future spacecraft. This new device should not
only act as a replacement, but should also have an increased
functionality and raised performance. The objective is not
to achieve full functional or timing compatibility between
the two devices, but to develop a successor that could in
most cases replace the MA1916 device with no or only
minor modifications existing board designs.

The rest of this section forms a preliminary requirement
specification of the new encoder device named RESCUE.
The text has been purposely based on the MA1916
specification to allow users easily to recognise potential
differences. As a baseline, the new device will be pin
compatible with MA1916. The RESCUE device pinout is
shown in figure 4 and is further discussed in section 7.

The RESCUE device will be based on the two encoder cores
that have been presented previously. Hence, all advantages
of assembling already verified blocks will be exploited,
such as minimising the required development schedule. The
RESCUE device will operate in two principal modes:
• Basic: largely compatible with MA1916;
• Advanced: with enhancements as listed further below.

The following enhancements over the MA1916 device are
envisaged for both modes:
• synchronisation markers, information and check

symbol output will always be deterministic after a reset
(MA1916 generates an invalid frame after a reset);

• internal symbol clock will be re-synchronised for every
frame (MA1916 only synchronises on the first frame
after a reset, something that has caused problems in
some previous board designs);

• errors due to SEUs will be contained within one frame
and its check symbols thanks to two mechanisms:
control logic will be re-initialised and re-synchronised
for each frame, and check symbol calculation will be
independent of any previous codewords;

• virtual fill and shortened codeword lengths will be
supported, allowing 1 to 222 suppressed symbols per
interleave depth (not supported in MA1916);

• deterministic relation between clock signals after reset;
• as a target, 20 Mbits/s data rate for the Reed-Solomon

encoder, and 40 Mbits/s symbol output rate for the
Convolutional encoder (5 and 10 Mbits/s for MA1916).

The following additional enhancements are envisaged for
the Advanced mode:
• special input for synchronisation marker bypass,

releasing the requirement on holding the Reed-
Solomon data input at logical 0 while check symbols
are being output (compatible with VCM);

• additional interleave depths 2 and 3 (supporting all
VCM frame lengths);

• on-chip support for cascading two Reed-Solomon
encoders, allowing interleave depths 6, 8 and 10 to be
realised without additional external logic;

Figure 4: Foreseen pinout for the RESCUE device

• pseudo-random generator compliant with (Ref. 1) and
(Ref. 2), implementing the polynomial

• clock divider always being active (only started on the
first frame after a reset in Basic mode and for MA1916).

The envisaged differences compared to MA1916 are:
• no test pattern generator (since not widely used);
• no production test pins (used for other functions);
• changes in sampling and clocking schemes (to allow for

a synchronous design and optimisation of the interfaces
for higher data rates).

Preliminary characteristics of the RESCUE device are:
Compliance: implementing ESA and CCSDS standards

on channel encoding (for packet telemetry
and advanced orbiting systems);

Compatibility: pin compatible with the MA1916, input
interface compatible with the VCM;

Performance: Reed-Solomon encoder and pseudo-
random generator with 20 Mbits/s data rate,
Convolutional encoder with 20 Mbits/s
input data rate and 40 Mbits/s output
symbol rate (preliminary targets);

Interleaving: 1 to 5 (plus 6, 8 and 10 with cascading);
Technology: MITEL 1.25 µm CMOS/SOS5 process

(former ABB Hafo), 6000 equivalent gates
Radiation: 100 kRad guaranteed total dose tolerance,

low SEU sensitivity and Latch-up immune
Power: +5 V supply, low power consumption;
Package: 28 pin flat pack;
Schedule: design start in 1Q97, prototypes in 3Q97,

SOS5 capability assessment programme
completion in 2Q97 and SOS5 Capability
Approval in 2Q98;

Support: supported by foundry as an ASSP with a
complete data sheet.

Bottom

28

27

26

25

24

23

22

21

20

19

18

17

16

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

AdvancedPseudoOut

SyncMarkOut

SyncMark

Clk

CEIn

CEOut

ClkSlave

NC

VSS

IL0

Unused

IL1

Symbol*

Reset*

Clk2Out

Frame

RSOut

Symbol

Unused

ClkOut

VDD

NC

IL2

RSIn

Clk2

Unused

FrameOut

view

h x() x
8

x
7

x
5

x
3

1+ + + +=

6 DISCUSSION POINTS

The baseline functionality of the RESCUE device has been
listed here above. There are however functions that have
been assessed during specification writing which have not
been included. In this section both these categories will be
discussed, providing the rationale for inclusion or rejection
of some of the more controversial features. Readers are
invited to provide comments and suggestions on what the
RESCUE device should implement to fit into their current
and future applications. Suggestions should be provided
before 15 January 1997.

For the Convolutional encoder no changes or enhancements
with respect to given standards have been included in the
RESCUE device. Means for interchanging G1 and G2 or
the position of the inverter could be considered. Also codes
with other constraint lengths or bit rates could be
considered if at least one specific application requiring this
is known before the design start.

Turbo codes have been suggested as a replacement for
Convolutional - and sometimes Reed-Solomon - encoding.
Such codes have been studied in other ESA activities, but no
ESA or CCSDS standard yet covers Turbo coding.
Inclusion of such an encoder would therefore only be
feasible if at least one application requiring it is known.

For the Reed-Solomon encoder no changes to the code are
envisaged since there is a fixed standard for telemetry
applications. There are however some other aspects that
need to be considered. The RESCUE device is targeted
towards applications with low to medium data rates.
Therefore, to support higher data rates, as would normally
be the case for advanced orbiting systems, is not feasible.

Interleave depths 1 to 5 have been chosen for the RESCUE
device, covering most applications except for some deep-
space missions where an interleave depth of 8 is desirable.
To support this interleave depth on-chip, an increase of
some 50% of silicon area would have been required,
resulting in a more expensive chip and unused functionality
for the average application. Instead, the baseline is to
support interleave depths 6, 8 and 10 by cascading two
RESCUE devices as shown in figure 5. No additional
external logic will be required for cascading.

In cascading mode, both the master and slave devices
receive incoming data at bit rate frequency. Each device
performs Reed-Solomon encoding on half the incoming
data, taking every second information symbol as input and
generating every second codeword symbol. The master
works on even numbered interleave depths and the slave on
odd numbered ones. The clock input on the slave encoder is
driven by the special ClkSlave output from the master,
generating a clock that is active only when odd numbered
symbols are received or transmitted. Complete codewords
(comprising both even and odd numbered symbols) are
provided on the RSOut and PseudoOut outputs of the
master encoder. A drawback with this cascading approach
is that the clocking scheme of the device becomes more
complicated. This could be mitigated if the encoder core is

designed in a way allowing odd or even symbols to be
ignored or suppressed, but that would adversely increase the
core sized. Note that the symbols from the Convolutional
encoder are provided on the CEOut output of the master.

To include additionally the RS(255, 239) code used for
digital video broadcasting seems not feasible since it is
based on a different field polynomial than the code used for
telemetry. Consequently, this would result in a large area
increase. Also, the desired data rates of some 200 Mbits/s
are not compatible with the low power/small area approach
chosen for the RESCUE device.

The clocking and sampling schemes of the RESCUE device
will be adapted to the VCM for the Advanced mode, but
will remain compatible with MA1916 for the Basic mode.
As an example, the ClkOut output will always toggle when
Clk2 is active, in contrast to MA1916 where this is started
at the beginning of the first frame after a reset.

The RESCUE device will include a Pseudo Randomiser
compliant with (Ref. 1) that will mix the Reed-Solomon
output bit stream with a deterministic pseudo-random
sequence. This function can be used to obtain the bit
transition density required on a channel to allow the receiver
on ground to maintain bit synchronisation.

Finally, the question of whether to provide a drop-in
compatible replacement for the MA1916 with the same
timing and functionality, including the less desirable
features, is still open. The baseline is to support the
functionality, but not to have exactly the same timing. This
is the case for the undeterministic relationship between the
input and output clock signals after reset that has been
observed for the MA1916 device, something that will be
improved in the RESCUE device.

Figure 5: Two cascaded RESCUE devices

RSIN

CLK

Clk2 ClkOut

Reed-Solomon Encoder

Convolutional Encoder

RSOUT

CEIn CEOut

RS in

RS clock

RS out

CE out

Slave encoder

X2
X1

RSIn RSOut

Reed-Solomon Encoder

Master encoder

Clk

(I = 6, 8, 10)

(I = 3, 4, 5)

ClkSlave

Clock Divider

X1/2

7 RESCUE PINOUT COMPARED TO MA1916

With pin compatibility between the RESCUE and MA1916
devices being an essential requirement, it was felt necessary
to conduct a preliminary comparison. A large part of the
MA1916 functionality is directly reflected on its pins and
their definitions have therefore been repeated in the
comparison below.

The intention is to provide the reader with a comprehensible
description of the potential differences between the two
devices. For a deeper understanding of the dissimilarities
and their impact, the reader is recommended to read the
MA1916 data sheet (Ref. 6). A summary of the pinout
comparison is given in table 3.

Pin 1: Advanced⇔ T2 (Test Pattern Select)

For MA1916, this input selects between patterns to be
generated by the test generator.

For the RESCUE device, this input will select between two
operational modes:
• Basic: largely compatible with MA1916 when tied to

logical 0;
• Advanced: enhanced mode when tied to logical 1.

Pin 14:Reset∗ ⇔ n_RST (Reset)

No difference between the MA1916 and RESCUE devices.

Pin 17:Clk2 ⇔ CLK (Clock)

For MA1916, this clock input drives the Reed-Solomon and
Convolutional encoders and the test generator.

For the RESCUE device, this input clock will drive the
Convolutional encoder and the clock divider, being active
on the rising edge.

Pin 27:Clk2Out ⇔ CLK_OUT (Clock Out)

For MA1916, this output is the buffered CLK input.

For the RESCUE device, this output will be the buffered
Clk2 input (which is compatible with MA1916).

Pin 22:ClkOut ⇔ CLKS (Synchronisation Clock)

For MA1916, this output defines the timing of the Reed-
Solomon encoder, acting as a bit delimiter. The toggling of
this output begins at the first rising SMC edge after reset.

For the RESCUE device, this output will act in two modes:
• Basic: compatible with MA1916;
• Advanced: this output will carry a clock signal with half

the Clk2 frequency, that will always toggle when the
RESCUE device is supplied with a clock on the Clk2
input. This will allow the bit clock of the VCM device
to be directly driven from the RESCUE device, without
the need for an external clock divider as is the case with
current VCM/MA1916 configurations.

Pin 3: Clk ⇔ CE_CLKS (Convolutional Clock)

For MA1916, this input defines the timing of the
Convolutional encoder, acting as a bit delimiter.

For the RESCUE device, this clock will drive the Reed-
Solomon encoder and act as a bit delimiter for the
Convolutional encoder.

Pin 6: ClkSlave⇔ TEST_POINT (Production Test)

For MA1916, this output is used for production testing.

For the RESCUE device, this output will carry a clock that
should be connected to the slave encoder when cascaded.

Pin 10: IL0 ⇔ SEL_A (Interleave Depth Select)

For MA1916, this input is used for selecting the interleave
depth of the Reed-Solomon encoder.

For the RESCUE device, this input together with IL1 and
IL2 will select the Reed-Solomon encoding interleave
depth, acting in two modes as defined in table 1 and table 2.

Pin 12: IL1 ⇔ SEL_B (Interleave Depth Select)

For MA1916, this input is used for selecting the interleave
depth of the Reed-Solomon encoder.

For the RESCUE device, see IL0 for a definition.

Pin 19: IL2 ⇔ T0 (Test Pattern Select)

For MA1916, this input selects between patterns to be
generated by the test generator.

For the RESCUE device, see IL0 for a definition.

Basic mode (compliant with MA1916)

IL0 IL1 IL2 Interleave depth Remarks

0 0 - 5 IL2 can be tied to logical 0 or 1

0 1 - 4 IL2 can be tied to logical 0 or 1

1 0 - 1 IL2 can be tied to logical 0 or 1

1 1 - 5 IL2 can be tied to logical 0 or 1

Table 1: Interleave depth selection: basic mode

Advanced mode

IL0 IL1 IL2 Interleave depth Remarks

0 0 0 1

0 0 1 2

0 1 0 3

0 1 1 4

1 0 0 5

1 0 1 6 slave set to 3 when cascading

1 1 0 8 slave set to 4 when cascading

1 1 1 10 slave set to 5 when cascading

Table 2: Interleave depth selection: advanced mode

Pin 26:Frame⇔ SMC (Select Message or Checksum)

For MA1916, this input selects between information
symbol input or check symbol output. No distinction is
made between check symbol output and synchronisation
marker transfer.

For the RESCUE device, this input will act in two modes:
• Basic: the same functionality as for MA1916;
• Advanced: this input will also select between

information symbol input or check symbol output, but
the distinction between check symbol output and
synchronisation marker transfer will be performed
explicitly with the SyncMark input. This mode is
compatible with the VCM output interface.

Pin 15: FrameOut ⇔ SMC_OUT (Message/Checksum)

For MA1916, this output is used with the test generator.

For the RESCUE device, this output will act in two modes:
• Basic: a logical 0 will be output;
• Advanced: the Frame input value will be output after

being sampled on the rising Clk edge.

Pin 2: SyncMark ⇔ T1 (Test Pattern Select)

For MA1916, this input selects between patterns to be
generated by the test generator.

For the RESCUE device, this input will act in two modes:
• Basic: can be tied to a logical 0 or 1;
• Advanced: this input will be used for indicating when a

synchronisation marker is transferred.

Pin 8: SyncMarkOut ⇔ ST1 (RS Output Valid)

For MA1916, this output indicates when the output from the
Reed-Solomon encoder is valid after a reset.

For the RESCUE device, this output will act in two modes:
• Basic: a logical 1 will be output, since the encoder will

transfer unmodified synchronisation markers and
produce valid codewords directly after reset;

• Advanced: the SyncMark input value will be output
after being sampled on the rising Clk edge.

Pin 18: RSIn ⇔ MSG (Message)

For MA1916, this input carries input data and
synchronisation markers, and must be held at logical 0
while check symbols are output.

For the RESCUE device, this input will also carry input data
and synchronisation markers. But in the Advance mode it
will not be required to stay at logical 0 while check symbols
are output, since it is masked by the SyncMark input.

Pin 25: RSOut⇔ RSE_OUT (RS Output)

For the MA1916 and RESCUE devices, this output carries
codeword symbols and synchronisation markers.

Pin 28: PseudoOut⇔ MSG_OUT (Test Message Out)

For MA1916, this output carries patterns generated by the
test generator.

For the RESCUE device, this output will act in two modes:
• Basic: a logical 0 will be output;
• Advanced: this output will carry the Reed-Solomon

encoder output mixed with a pseudo-random sequence.

Pin 24:Symbol⇔ SYZ (Byte Rate Clock)

For the MA1916 and RESCUE devices, this output is a
symbol clock used in the Reed-Solomon encoding. It is high
during every eighth CLKS period and low at other times.

Pin 13:Symbol∗ ⇔ SZY (Byte Rate Clock)

For the MA1916 and RESCUE devices, this output has the
inverted Symbol value (i.e. the SYZ value for MA1916).

Pin 4: CEIn ⇔ CE_IN (Convolutional Data In)

For the MA1916 and RESCUE devices, this input carries
input data to the Convolutional encoder. This input also
carries odd check symbols from the slave to the master
when two RESCUE devices are cascaded.

Pin 5: CEOut ⇔ CE_OUT (Convolutional Output)

For the MA1916 and RESCUE devices, this output carries
output symbols from the Convolutional encoder.

Pin 7 and 20: NC⇔ N/C (Not connected)

No difference between the MA1916 and RESCUE devices.

Pin 11:Unused⇔ ST2 (Production Test Output)

For MA1916, this output is used for production testing.

For the RESCUE device, a logical 0 will be output.

Pin 16:Unused⇔ READY (Test Data Valid)

For MA1916, this output is used for test patter generation.

For the RESCUE device, a logical 1 will be output.

Pin 23:Unused⇔ T3 (Production Test Input)

For MA1916, this input is used for production testing.

For the RESCUE device, it can be tied to a logical 0 or 1.

Pin 9: VSS⇔ VSS

No difference between the MA1916 and RESCUE devices.

Pin 21: VDD ⇔ VDD

No difference between the MA1916 and RESCUE devices.

8 SUMMARY

An ongoing development of reusable Reed-Solomon and
Convolutional encoder cores has been presented. The
encoders are oriented towards low or medium data rate
applications such as packet telemetry. They are written in
synthesizable VHDL and can be modified to accommodate
higher data rates or other encoding algorithms if required.

The cores will potentially provide reduction of design effort
for devices that incorporate them, since they already will
have been verified for correct operation and
implementability. If a device incorporating the encoders
needs to be transferred to another foundry, the cores will act
as a virtual second source reducing further design efforts.

In parallel with the current encoder core development,
further specification of a radiation hard device that will
replace the discontinued MA1916 device is necessary.
Users are asked to provide detailed requirements on what
functionality is needed and what new capabilities should be
incorporated in the replacement device named RESCUE.

Please direct comments and suggestions regarding the
preliminary RESCUE device specification to the author.

9 REFERENCES

1 Telemetry Channel Coding Standard, ESA PSS-04-103,
Issue 1, September 1989

2 Telemetry Channel Coding, CCSDS 101.0-B-3, 1992
3 Packet Telemetry Standard, ESA PSS-04-106, Issue 1,

January 1988
4 Packet Telemetry, CCSDS 102.0-B-4, 1995
5 Advanced Orbiting Systems, CCSDS 701.0-B-2, 1992
6 GPS SOS Radiation Hard Handbook, July 1995
7 MITEL VCM HAF_12396 Data Sheet, January 1994

10 ACRONYMS AND ABBREVIATIONS

ASSP Application Specific Standard Product
CCSDSConsultative Committee for Space Data Systems
CMOS Complementary Metal-Oxide Semiconductor
RS Reed-Solomon
SEU Single Event Upset
SOS Silicon On Sapphire
VCM Virtual Channel Multiplexer
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuits

Pin
number

I/O
type

RESCUE
pin name

MA1916
pin name

Basic mode Advanced mode Compatible
with MA1916

Remarks

1 I Advanced T2 tie to logical 0 tie to logical 1 partially mode selection

14 I Reset∗ n_RST reset as for Basic mode yes

17 I Clk2 CLK as CLK as for Basic mode partially drives Convolutional encoder

27 O Clk2Out CLK_OUT as CLK_OUT as for Basic mode yes Clk2 buffered

22 O ClkOut CLKS as CLKS always toggled yes Clk2 divided by 2

3 I Clk CE_CLKS as CE_CLKS as for Basic mode partially drives Reed-Solomon encoder

6 O ClkSlave TEST_POINT logical 0 slave clock partially used for cascading

10 I IL0 SEL_A as SEL_A selects interleave depth yes supports 1-5 in advanced mode

12 I IL1 SEL_B as SEL_B selects interleave depth yes supports 1-5 in advanced mode

19 I IL2 T0 tie to logical 0 or 1 selects interleave depth yes supports 1-5 in advanced mode

26 I Frame SMC as SMC as for Basic mode yes compatible with VCM

15 O FrameOut SMC_OUT SMC delayed as for Basic mode no (old test generator output)

2 I SyncMark T1 tie to logical 0 or 1 bypass RS encoding yes compatible with VCM

8 O SyncMarkOut ST1 logical 1 SyncMark delayed partially (old production test output)

18 I RSIn MSG as MSG as for Basic mode yes

25 O RSOut RSE_OUT as RSE_OUT as for Basic mode yes

28 O PseudoOut MSG_OUT logical 0 pseudo-random transitions no (old test generator output)

24 O Symbol SYZ as SYZ as for Basic mode yes

13 O Symbol∗ SZY as SZY as for Basic mode yes

4 I CEIn CE_IN as CE_IN as for Basic mode yes also used for cascading

5 O CEOut CE_OUT as CE_OUT as for Basic mode yes

7 & 20 N/C NC N/C yes

11 O Unused ST2 logical 0 logical 0 partially value compatible with MA1916

16 O Unused READY logical 1 logical 1 partially value compatible with MA1916

23 I Unused T3 tie to logical 0 or 1 tie to logical 0 or 1 yes (old production test input)

9 P VSS VSS yes

21 P VDD VDD yes

Table 3: Comparison between the pinouts of the RESCUE and MA1916 devices

	Abstract
	1 INTRODUCTION
	2 APPLICABLE STANDARDS
	3 REED-SOLOMON ENCODER CORE
	4 CONVOLUTIONAL ENCODER CORE
	5 RESCUE: REED-SOLOMON AND CONVOLUTIONAL ENCODER
	6 DISCUSSION POINTS
	7 RESCUE PINOUT COMPARED TO MA1916
	8 SUMMARY
	9 REFERENCES
	10 ACRONYMS AND ABBREVIATIONS

