
Abstract

Board-level simulation is a necessity for successful
development of printed circuit boards built with complex
components such as microprocessors, ASICs and ASSPs.
In this paper an approach to prototyping will be
presented based on VHDL models for board-level
simulation. Examples of industry activities using such
models for simulation of spacecraft electronics will
demonstrate the feasibility of this approach. The
importance of optimisation on the source code level will
be shown with practical examples on simulation
performance improvement. Distribution of models will be
discussed, emphasising on protection of design
information and model availability.

1. INTRODUCTION

VHDL is a language for specification, design and
simulation of digital electronics, including Application
Specific Integrated Circuits (ASICs), board designs and
subsystems. VHDL stands for VHSIC Hardware
Description Language, where VHSIC stands for the Very
High Speed Integrated Circuit project initiated by the US
Department of Defence. In 1987 VHDL became IEEE
standard 10761.

In European Space Agency (ESA) developments a
VHDL model is normally required when an ASIC is
designed to allow the functionality to be independently
verified by simulation. A logical follow-on activity is to
model and simulate complete board designs using
VHDL. Such an approach will be presented hereafter.

2. WHAT IS BOARD-LEVEL SIMULATION?

Board-level simulation can be defined as simulating the
functionality of one or several printed circuit boards built
with standard components, possibly incorporating ASICs
and Application Specific Standard Products (ASSPs).
Board-level simulation is also known as rapid or virtual
prototyping and sometimes system simulation. The
purpose of board-level simulation is to verify the correct
behaviour of the board design, e.g. that the components
operate in the selected operating modes as intended.
When board designs contain processors it is possible to
perform verification of the hardware and software

interaction, such as verifying that ASIC registers can be
programmed and software drivers work properly etc. In
addition, the performance of the processor board could be
evaluated. Board-level simulation will also give some
information about timing correctness, though it should
not replace worst-case timing analysis for high-reliability
applications such as spacecraft.

To avoid unreasonable expectations from board-level
simulation it is necessary to understand what it does not
comprise. It does not comprise simulation of system
performance, including aspects such as throughput and
latency, where neither accurate data nor clock behaviour
is considered being essential. Neither does board-level
simulation comprise explorative simulation for defining
system baselines.

By employing board-level simulation, simulated
integration and test of printed circuit boards can be
performed early in the development without any
hardware manufacturing. The manufacturing can
therefore be postponed until the specifications have
settled and all interfaces have been verified. Board-level
simulation supports a top-down methodology, allowing
simulation of boards not implemented, enabling the
designer to work with incomplete specifications of the
own system or component, and facilitates early
verification of the functionality. In large developments
with boards being developed by several different
subcontractors, the designer can deliver a board design
with simulation models for early system verification.

When designing an ASIC, its operation in a board design
can be verified before manufacture. If models for board-
level simulation are provided before the first silicon for
an ASIC or ASSP, significant savings in schedule can be
obtained for the first board designs using them.

Models for board-level simulation allow the designer to
simulate situations that are difficult to capture in real
hardware resulting in a more thorough verification of the
board design. It also provides the designer with unlimited
probing and acquisition points, not always possible to
realise for the hardware, and can also provide visibility
into the internal state of components, such as registers
and state machines.

Board-Level Simulation using VHDL Models

Sandi Habinc and Peter Sinander

European Space Agency, ESTEC WSM, Postbus 299, 2200 AG Noordwijk, The Netherlands
sandi@ws.estec.esa.nl, psi@ws.estec.esa.nl

Models for board-level simulation can provide limited
simulation support during parallel development of
software and hardware. This type of simulation usually
takes long time to perform when using such models but
delivers high functional accuracy. By carefully selecting
which software parts to simulate, the simulations can be
reduced to manageable times. It is perhaps not feasible to
boot an operating system, but all the firmware could be
verified using board-level simulation. Board-level
simulation enables hardware and software designers to
work together in an early stage and to solve interfacing
problems before the hardware manufacturing, which is
especially important when ASICs are involved due to
large schedule and non-recurring engineering cost
impact. This type of simulation will become more
interesting with the continuously increasing speed of
workstations and simulators.

A major issue for board-level simulation is the
availability of simulation models of the components used
on the board. Despite commercial models being available
for many standard components, increasingly often
ASSPs, ASICs and other special devices are used. VHDL
models are therefore an interesting alternative when no
models are available, which is the typical case for almost
all components used on-board spacecraft. By using
VHDL the effort to support several platforms and
simulators is greatly reduced, since VHDL models
require no or only minor modifications for each new
simulator. VHDL has therefore been chosen as the
modelling language for models for board-level
simulation to be used in developments funded by ESA.

3. FUNCTIONAL ACCURACY

A model for board-level simulation is characterised by
modelling of the component behaviour, simulation
performance, and ease of use for board designers. The
behaviour of the model as seen from the outside should
be the same as for the actual component and should
include the full functionality. Specific test modes only
used for manufacturing test need not be implemented.
The interface signals of the model should have the same
waveform behaviour as the component it represents.
Models intended for board-level simulation need to have
a common model interface, implement timing modelling
(setup and hold times, output delays etc.) and handling of
unknowns for the model inputs and outputs. This also
applies to VHDL models for board-level simulation.

Bus functional models, sometimes called bus interface
models, are considered being reduced models for board-
level simulation, modelling only timing and behaviour of
the component interfaces. These are typically used for
very complex devices such as processors in which case
instruction execution, interrupts etc., are not available in
the model. The timing and format of output drivers for
data/control/addresses etc. are modelled as accurately as
possible, while the internal functionality of the
component is not necessarily modelled at all. Using bus
functional models does not provide the full potential of
board-level simulation, only modelling the interfaces.

Models for board-level simulation have to implement the
functional behaviour of components accurately enough to

Entering state S1
Entering state S3
Entering state S5
Entering state S0

SW C2H=11000010B
R0 34H=00110100B
R1 F3H=11110011B
R2 ECH=11101100B

Interrupt 2
Interrupt 5
Interrupt 1
Interrupt 2

LD R0,R3,0EFFH
LD R1,R2
OR R0,R1,01BCH
ST R0,R3,0EFFH

Figure 1: The designer’s view of a board design when using board-level simulation.

allow board designs to be verified for functionality and
timing. Simulating boards using models with high
accuracy will reduce the number of errors found on the
manufactured board. However, an error in a model can
lead to design errors, e.g. in an ASIC or a printed circuit
board, not being detected alternatively being introduced
in the board design.

There are two major approaches to modelling;
independently develop the model from a functional
specification or data sheet, or enhance an existing model
on the Register Transfer level (RTL) or higher. The first
approach is necessary when no RTL model is available to
the board-level developer, or when only a gate-level
model is available.

Care should be taken when a model is developed using
only a data sheet as input, since the component is not
always described in a data sheet as actually being
implemented. Details might be left out and errors can
have been introduced, and there are more chances for
misunderstandings. The information in the data sheet
could have been simplified, e.g. the description of an
interface protocol may be more constrained than the
actual design requirements, which would result in a not
fully correct model. When a model for board-level
simulation is being developed in parallel with the
component and the two are compared with each other by
means of simulation, the component development could
most likely benefit from the independent interpretation of
the specification made by the board-level developer.

The simulation performance should be assessed when
transforming an RTL model to a model intended for
board-level simulation, since RTL models do normally
not have sufficient simulation performance. Also, RTL
models are normally written for synthesis, which imposes

conflicting requirements on the VHDL code with respect
to models for board-level simulation. The main
development effort would then be to optimise the code
for simulation performance, to implement the model
interfaces and to develop the verification test stimuli.

Occasionally there are inconsistencies between the
behaviour that is described by the RTL model and the
data sheet. It may be that some functionality of the device
has been simplified or omitted in the data sheet, e.g.
proprietary design features. The more accurately the
model reflects the actual hardware, the more likely is it
that problems in a board design will be detected while
simulating it. Also, the inclusion of unsupported or
undocumented functionality of the component in the
model for board-level simulation could simplify its
comparison versus an RTL model during verification,
using the same set of stimuli.

4. SIMULATION PERFORMANCE

The performance of present workstations and VHDL
simulators provides a means for simulating board designs
comprising several complex components such as
microprocessors and ASICs. However, to be able to tap
this simulation performance the models have to be
efficiently coded for simulation. An absolute requirement
on simulation performance for models intended for
board-level simulation cannot easily be defined, although
unnecessarily slow or cumbersome implementations
should be avoided.

The recommendations presented below are based on
experiences with modelling and using models for board-
level simulation, and on results from an ESA activity on
simulation performance. This is not an exhaustive list of
issues to be addressed when a model is tuned for
simulation performance. It should also be remembered

process (Clk, Reset)
begin

if Reset=‘1’ then
elsif Clk=’1’ then
elsif Clk=’0’ then
else
end if;

end process;

Refinement

Specification

Verification

Validation

RT-level Gate-level

Hardware

Board-level
Data Sheet

Figure 2: Sources of information for modelling.

that each suggestion might not be true for all situations
and simulators. More detailed information on modelling
for simulation performance can be found in the article
Using VHDL Models for Board-Level Simulation5 in the
1996 fall issue of theIEEE Design & Test of Computers
magazine.

The major contributors to the time spend simulating
VHDL models are signals, processes and concurrent
statement, which even in optimised models account for
80% to 90% of the total time. Variables should therefore
be used instead of signals wherever possible, since each
signal requires specific handling (event scheduling)
which takes more memory storage and instructions to
execute. In fact, results show that signals significantly
contribute to the simulation time compared to variables.

Each process invocation has a cost in terms of simulation
performance and in principle the number of processes
should therefore be kept small. An observation made is
that functionality sensitive to the same signals should be
grouped in the same process, reducing the number of
processes to invoke for each signal event. Following this
approach, all functions related to the same clock region
should be grouped in one process. Another reason for
merging processes is that the number of signals used for
the communication between them is reduced.

A fundamental rule when modelling for simulation
performance is to only execute code when necessary.
Therefore, conditional statements should be used to
reduce unnecessary execution of code. An outer
conditional statement should reduce the necessity to
evaluate enclosed conditional statements. This is done by
using nested if and case-statements, ordered so that the
branches with the highest probability are executed first.
The efficiency of the ordering of conditional statements
can be assessed by analysing the results from a code
coverage utility. The performance can thereafter often be
improved by reordering the code or modifying the
structure of conditional statements. Results have shown
that an assignment of a signal is between one and two
orders of magnitude more costly in terms of simulation
time compared to reading a signal or variable in an if-
statement. This suggests that one can use large structures
of if-statements to prevent a signal to be unnecessarily
assigned, and still gain in simulation performance.

Many rules and techniques that apply to writing
optimised software, such as loop unrolling, code in-lining
etc., do also apply to models with good simulation
performance since VHDL has many characteristics of a
programming language. Some VHDL simulators have
less built-in optimisation capabilities than state of the art
compilers for software, and it is therefore often beneficial
to manually perform optimisation at the source code

level. In addition, calls to subprograms declared in
packages are difficult to optimise by the analyser since
the package body can be reanalysed without demanding
that the code where the call is made from is reanalysed as
well. It is therefore necessary to manually replace
subprogram calls by in-line coding in the source code
when optimising a model for simulation performance.

Writing efficient VHDL models requires knowledge of
which constructs are fast, and which ones should be
avoided. While experienced model writers often have a
feeling for efficient coding, there is currently little exact
information available. The model writer therefore needs
a “cost list” for different VHDL statements in terms of
simulation performance and memory usage. Having such
information based on quantitative measurements and not
on assumptions, can help the model writer to choose
between coding variants for the best performance. As a
first step to such a “cost list” an activity was initiated to
measure the cost of several basic low-level VHDL
constructs such as variable and signal assignments. After
obtaining the final results from the study above, it should
be possible to extract more exact information about what
VHDL constructs simulators optimise poorly.

5. EXAMPLES OF OPTIMISATION FOR
SIMULATION PERFORMANCE

When developing an ASIC or other component using
VHDL and synthesis, the objective is the resulting
component and not the VHDL model as such. The VHDL
model is often split into parts allowing several designers
to be involved concurrently, each working on a separate
part. To facilitate both the design and verification, each
part is then further broken down into code chunks of
manageable size. Any optimisation performed is targeted
to the synthesis results, to reduce area and/or increase the
design speed as required. Sometimes functionality is also
added for testability reasons. Not being a primary
objective, the resulting simulation performance is often
far below a model coded for optimal simulation
performance. While acceptable for the simulations
during the development, optimisation of the simulation
performance is necessary to allow the model to be used
for board-level simulation.

In order to estimate the possibility to automatically
transform a VHDL RTL model into a functionally
identical model with better simulation performance, a
series of experiments where performed on a model from
an ASIC development activity, including:

• Unnecessary signals were removed;

• Hierarchy was removed so all processes were
contained in the same architecture;

• All clocked process were then merged into one, with
only a single clock edge condition statement.

In this experiment the performance increased by up to a
factor of two, although a large number of concurrent
processes and signals was not optimised due to
constraints on the effort available to continue the
experiment. The above optimisation steps were
implemented in a way allowing automatic translation of
a VHDL model according to a set of transformation rules.
Such a tool could be implemented as a VHDL-to-VHDL
translator, or alternatively, be implemented directly in a
simulator as one optimisation step. The latter method
would of course be preferable, since besides being
invisible for the user, also the designers of the ASIC
would benefit from the simulation speed-up.

Another example is an ASSP for telemetry that has been
modelled on several abstraction levels and the simulation
performance has been monitored throughout the
development of the different models. The ASSP was
designed using Verilog written on the register transfer
level, although many blocks resembled functions such as
flip-flops and low level multiplexers. The design was then
translated to VHDL using semi-automatic conversion.
The purpose of the translation was to enable ESA to
independently verify the design on a VHDL simulator.

A model for board-level simulation was developed for
the ASSP following the ESA guidelines, the model
comprising multiple processes representing the major
blocks in the component. Further optimisation was done
by capturing the synchronous functionality of the ASSP
in one process and all asynchronous interfaces in another
process. A memory under the exclusive control of the
ASSP was integrated in the process containing
synchronous functions, removing any overhead in terms
of signal assignments for memory interfacing, and also
removing the memory model out of the simulation. The
increase of simulation performance between the different
abstraction levels was quite remarkable. The model
intended for board-level simulation simulated
approximately one hundred times faster than the register
transfer level model, which is a performance increase that
makes board design simulations feasible. It shall be

mentioned that the RTL model was only two times faster
than a gate-level model run on a conventional non-VHDL
simulator. The RTL model was however written on a low
abstraction level and the translation from Verilog was
perhaps not the most efficient one. An RTL model written
directly in VHDL should normally be much faster than
the gate-level model and not fully that much slower than
the model for board-level simulation. The model with
only two processes and with the memory integrated was
yet five times faster than the model intended for board-
level simulation. Normally this ASSP is used in a
constellation where there are four to eight of these
components, and consequently the performance of the
model has a great impact on the total simulation time.

6. VERIFICATION

Verification of models intended for board-level
simulation is performed to ensure that the model
correctly represents the actual hardware what concerns
functionality and timing. Two categories of verification
can be identified; to ensure that the model has the same
functionality as the actual hardware (performed during
model development), and to verify that the model works
for a certain combination of simulator and platform
(performed by the user with test stimuli provided by the
model developer).

The first category of verification should be performed at
the end of the model development to ensure that the
model intended for board-level simulation reflects the
functionality of the component. The method outlined
here is based on the existence of actual hardware or a
low-level design representation such as a gate netlist for
comparison. When this is not available, the verification
should be based on information found in a data sheet or
similar, though this increases the number of potential
errors and misunderstandings regarding the functionality.
Emphasis should then be put on performing the
verification independently from the model development.
The verification should include all functional test stimuli
used during the component development. As a last

Gate-level RT-level Board-level Board-level with

2: 1 100 : 1 5 : 1

memory integrated

Memory

process (Clk, Reset)
variable Mem;

begin
if Reset=’1’ then
elsif Clk=’1’ then

Mem(A, B) := D;
elsif Clk =’0’ then

D <= Mem(A, B);
else

D <= ’Z’;
end if;
end process;

process (Clk, Reset)
begin

if Reset=‘1’ then
elsif Clk=’1’ then
elsif Clk=’0’ then
else
end if;

end process;

MemoryMemory

(not VHDL)

Figure 3: An example of simulation performance speed-up due to increase of abstraction level

verification, the model should be simulated when placed
in a typical board design to detect any problems not
covered by other test stimuli. The test stimuli should be
suitable as a maintenance vehicle for verifying the model
after modifications. As for all verification activities, test
stimuli should be developed by somebody not involved in
the development of the model to avoid masking of errors.

The second category of verification should be performed
by users after installing a model in their particular
simulation environment to ensure that it will operate
correctly. This should be done by using one or more test
stimuli provided by the model developer, reporting
whether the test has passed or failed. The reason for
performing a verification when a model is installed is that
there are still some differences between VHDL
simulators and different releases of the same simulator. In
addition, users tend to suspect the models first in case of
a problem during simulation. Test benches that support
automatic verification and require a minimum
involvement by the user are more likely to be used,
potentially reducing the amount of problem reports not
related to the model itself being handled by the model
developer or distributor.

A method useful for verifying that the exact behaviour of
a model has not changed when delivered to the user is to
sample the outputs on the test object and compress the
acquired data using a Multiple Input-Signature Register
(MISR) which is compared to a predetermined signature
to determine whether a test has passed or failed. The
benefit of compressing output data is the elimination of
large reference files. This approach could also be used for
regression tests during all types of model an ASIC
developments. Such data compression is most feasible
for data that have been synchronously sampled, and are
therefore best used for test benches verifying the
functional behaviour on a per clock cycle basis. The
MISR should have sufficient number of register stages to
allow for long test stimuli without significant risk of error
masking. It should therefore be structured as a primitive
binary polynomial implementing a maximum length
Linear Feedback Shift Register (LFSR). More
information about MISR and LFSR can be found in the
text bookBuilt-In Test for VLSI6.

The efficiency of a test stimulus can be evaluated using
quantitative measurement methods such as code
coverage. A code coverage utility can help verifying that
a test stimulus executes every source code line of a
model, but does not tell how much of the model
functionality has been covered. The purpose of the
verification should always be to verify the complete
functionality of the model, not to solely satisfy the code
coverage goal since it is merely an inexact measurement
of the verification efficiently.

7. MAINTENANCE OF MODELS

During the last five years ESA has received VHDL
models developed by contractors. For each delivery of a
model, new error types and unusual coding styles that
should be avoided have been identified. Although some
of these coding anomalies might be regarded as minor,
problems in terms of long-term maintenance, code reuse
etc. are significant when considering a large number of
models and with many different companies being
involved, either as model developers or model users. In
all situations where VHDL is employed for portability
reasons, modelling guidelines are necessary as well.

Before creating ESA specific guidelines, a search was
done for existing modelling guidelines that could be
used, fully or at least as a starting point. Unfortunately,
those guidelines found were not considered as very
useful, containing mainly general and high-level
requirements. Such guidelines would require each user to
spend significant effort for the analysis of requirements
and for developing the technical solutions needed. In
addition, despite several years of existence none of these
guidelines seem yet to be widely accepted by the design
community.

The first basic modelling guidelines were established in
1992, based on our own modelling experiences obtained
during several years. They were introduced for
contracted developments and were updated every time a
new VHDL model was received. After several such
overlapping iterations, in March 1994 a major draft was
circulated for review among most of the companies
working with ESA. The ESA VHDL Modelling
Guidelines3 document was issued in September 1994. It
is used as a requirement document in many ESA
contracts involving VHDL modelling. In line with the
philosophy of not mandating specific design tools, the
VHDL Modelling Guidelines can be used with
practically any VHDL simulator or synthesis tool. The
guidelines have been written to be practical and ready-to-
use, since this gives the best effect; “many designers
prefer a small well-defined box to a large but unknown
freedom”. But it is crucial to avoid insignificant issues
considered as almost fundamental by some designers. A
typical example is whether to use upper- or lower-case
characters for reserved words; this actually unimportant
issue can cause endless discussions.

As a support to the VHDL Modelling Guidelines when
developing models for board-level simulation, the ESA
documentVHDL Models for Board-level Simulation4 has
been prepared. While the guidelines largely contain
requirements, this document shows how they can be
implemented in a practical way, explaining underlying
issues and trade-offs. The main scope is VHDL models

for board-level simulation, but many techniques can be
used also in other types of developments, such as
verification of ASICs.

For models intended for board-level simulation the
concept for timing modelling is based on the IEEE Vital2

(VHDL Initiative Toward ASIC Libraries) activity. This
allows the Vital subprograms to be reused, saving coding
effort as well as potentially offering speed optimisation;
several simulators already offer optimised versions of
Vital subprograms. Full Vital compliance has not been
achieved since a different technique for the selection of
the simulation conditions (e.g. minimum or max.imum
delay) has been specified. Vital is based on using an
external delay calculator, where the actual timing values
for a specific simulation condition are back-annotated
using the SDF (Standard Delay File) format. It was felt
that users of board-level simulation prefer a less
complicated mechanism such as simply using a single
generic to change the simulation condition.

8. DISTRIBUTION OF MODELS

In 1996 ESA will have received around twenty VHDL
models of complex ICs for spacecraft electronics. A
logical step would be to actively introduce the concept of
board-level simulation to the companies working with
ESA depending on their interest. Not only will board-
level simulation improve the design quality and reduce
the development schedules, it also will give new
companies increased possibilities to design spacecraft
electronics, thus increasing the competition as well as the
competitiveness of the equipment suppliers. The major
task is to ensure the availability of simulation models.

Realising that the market for simulation models for
space-specific components is too small to be of economic
interest to established modelling companies as Synopsys
Logic Modelling, our strategy is to reuse the VHDL
models developed when the components are designed.
By using VHDL the effort to support several platforms
and simulators is greatly reduced, since VHDL models
require no or only minor modifications for each new
simulator. This trend can be seen also for commercial
models, e.g. Synopsys Logic Modelling offers VHDL
models of lower complexity components.

Commercially, C models have often been used for
complex components due to historical reasons and
claimed performance gains. However, the cost for
scheduling model external signals in current simulators is
the major limiting factor what concerns simulation
performance. Until significant improvements in the
signal scheduling have been introduced, there should be
little difference in simulation performance between
VHDL and C based models in a VHDL simulator.

While distributing VHDL source code would require a
minimum effort since the user can be made responsible
for the adaptation for different simulators if necessary,
such an approach would not be acceptable for reasons of
protecting the design information. The company that
designed the component is understandably often
unwilling to let the information become available to its
competitors, especially in those cases where the VHDL
code is synthesisable. The availability of VHDL source
code would encourage the redevelopment of similar
devices leading to increased costs for ESA as well as
significantly decreasing the interest for foundries to
support the devices as ASSPs.

A first level of protection can be achieved by source code
encryption or scrambling. With this technique comments
are removed, identifiers are replaced with meaningless
names and code structure such as indentation is removed.
While the encrypted source code is difficult to read
directly, it can be automatically processed to increase the
readability. Worse is that the model is still identical, i.e. a
synthesisable model will still be equally synthesisable. In
one case as an experiment, encrypted VHDL source code
has been distributed in combination with a non-
disclosure agreement. While encryption tools are
commercially available, for this first experiment a simple
encryption tool was developed in-house.

proCess bEgiN WAIT on llllll1ll ; if llllll1ll =
‘1’ AnD llllll1ll’EvEnt ANd llllll1ll’laST_VaLUE
= ‘0’ THeN l1l1111l1 <= l11lllll1 ; IF l1l1ll1l1
= ‘0’ thEn l1111llll <= “00111111” ; lll1l1ll1
<= “11111111” ; ElsIf (ll1l111l1 = ‘1’ anD
ll1111l1l = ‘1’) ThEn l111ll1ll <= l111ll1ll +
“00000001” ; eNd IF ; iF (l11l1l11l = ‘1’) THEn
ll11llll1 <= l1111llll ; eNd if ; ENd iF ; EnD
iF ; eND pRocESS;

Figure 4: Encrypted VHDL source code

The solution envisaged for potential future model
distribution is to supply the models in an analysed format,
supporting those simulators allowing sufficient
protection of the VHDL code. A further requirement is
that it must be possible to remove most of the remaining
source code information. To increase the level of
protection, in some cases the compilation could be
combined with source code encryption, to rename units
and signals internal to the model. In specific cases the
VHDL models can first be modified to be more difficult
to synthesise, for example by eliminating hierarchy and
by merging processes. An additional benefit would then
be increased simulation performance.

While models could be freely distributed both in source
code and analysed format, such a service would not be
feasible since the cost for maintenance would not be
covered. It is preferred that all models are bundled and

sold in a package including maintenance, being handled
by a commercial company.

Scripts have been created that automatically analyse a
VHDL model for a specific simulator version and purge
all unnecessary source code information. Automatic test
benches are then used to verify the analysed model
without manual inspection being necessary.

The final decision whether to launch a service for this
type of model availability will depend on many factors,
such as the market size and expectations, and the
existence of a suitable distribution company, the latter
currently being the major problem.

9. EXPERIENCE USING MODELS

An activity to demonstrate board-level simulation was
started in 1994. The aim was to design and simulate a
fictive computer for spacecraft data handling. The board
design incorporates a processor of the MIL-STD-1750
type, memories, a bus interface for accessing other units
on-board the spacecraft, four ASSPs implementing the
up-link and down-link communication protocols, and
some glue logic. Models for the processor, memories and
glue logic were written based on their data sheets. These
models were written for high simulation performance. In
addition, very basic software for the verification of the
board design was written in assembler.

As a result of the board-level simulation around ten errors
in the hardware design and in the software were detected.

The hardware errors ranged from devices not being reset
and buffers being incorrectly activated to identification of
omissions in the board specification. While the software
intentionally was simple, several errors in the interaction
between the hardware and the software were discovered
and corrected.

In addition to demonstrating the concept of board-level
simulation, several issues related to the development of
complex models for board-level simulation were
identified. One finding is that at the time of writing it
seems difficult to reach more than one thousand
simulated instructions per second for a timing accurate
VHDL model of a processor. The reason for this limit is
seemingly due to limitations in the implementation of the
signal scheduling of current VHDL simulators. As
reference, an instruction simulator in VHDL, i.e. without
time notion or signal scheduling, has roughly one order of
magnitude higher performance, and an instruction
simulator written in C has up to two orders of magnitude
higher simulation performance.

Another finding is that developing complex models from
their data sheets requires large efforts for the modelling
as well as for the verification. As an example, for the
processor model the original verification was extensive
including test stimuli for each instruction as well as
verification using part of the functional production test
vectors. Nevertheless, almost one hundred errors were
found when ESA later validated the model with respect to
the original design database of the device using pseudo-
random sequences of in total several million instructions.

Formatter

Formatter

Downlink

Uplink
ROM

RAMCPU

Bus

Downlink

Decoder

I/F

Encoder

Spacecraft
data handling
computer

Multiplexer

Test
generator

and
checker

Figure 5: A fictive computer for spacecraft data handling

The activity had to be closed with several errors
remaining.

In another case, a European space company has
successfully demonstrated the benefits of using models
intended for board-level simulation while designing an
ASIC to be used for a number of satellites. The ASIC
interfaces several components using different protocols
in an on-board data handling system, and performs
conversion between these protocols. The design was
verified by simulating not only the board on which the
ASIC was located, but also some components on other
boards with which the ASIC interfaces. Two of these
components were represented in the simulation as models
developed according to the guidelines for board-level
simulation established by ESA, of which one model has
been developed by a third company and the other was an
ESA in-house development. The simulations of the ASIC
and these models revealed two errors in the ASIC design
that could be corrected prior to manufacturing. The errors
were located in the ASIC subblock interfacing the models
developed for board-level simulation and were caused by
undocumented component behaviour. The modelling of
the reset sequence for the two models and the start-up
procedure for one of the protocols enabled the designers
to discover the errors, demonstrating the importance of
modelling for functional accuracy. The availability of
these models also made it possible for the company to
generate test vectors for the printed circuit board
containing the ASIC, to be used by their automatic test
equipment during the manufacturing of the board.

During the last year, models for board-level simulation
have been used by ESA when performing independent
verification of ASIC designs. In one case an ASIC has
been successfully simulated together with two different
microprocessor models, peripherals and multiple data
handling bus components, in total comprising eight
different models. Being already developed, the effort for
using these models was minor. Furthermore, large parts
of previously developed test stimuli were reused.

10. SUMMARY

In this paper the current usage of VHDL in ESA has been
presented. One logical step after using VHDL for ASIC
design has been identified as board-level simulation. A
definition of board-level simulation has been presented
together with its benefits and limitations. Its major benefit
being verification of printed circuit boards or subsystems
without the need for manufacturing any hardware.

The importance of accurate models has been described,
identifying two different approaches to model
development; refinement of an existing RTL model, or
modelling using a data sheet or a specification as input.

Recommendations have been given on modelling for
simulation performance, based on experience with
development of models for board-level simulation and
results from an ESA study. Some examples of simulation
performance improvement have also been presented.

Two categories of model verification have been
discussed; to ensure that the model intended for board-
level simulation has the same functionality as the actual
hardware, and to verify that the model works for a certain
combination of simulator and platform.

A major issue for board-level simulation is the
availability of simulation models of the components used
on spacecraft. Issues concerning the distribution of
VHDL models without revealing proprietary information
have been discussed, suggesting encryption and
compilation as techniques for protection.

Finally, successful industry activities using models for
board-level simulation have been presented. The
experience from these activities demonstrates the
feasibility and benefits of board-level simulation for
spacecraft electronics.

11. REFERENCES

1 IEEE Standard VHDL Language Reference Manual,
IEEE Std 1076-93, IEEE, New York, USA, 1994

2 IEEE Standard VITAL ASIC Modelling
Specification, IEEE Std 1076.4-95, IEEE, New York,
USA, 1995. URL: http://vhdl.org/vi/vital

3 VHDL Modelling Guidelines, P. Sinander
ASIC/001, European Space Agency,
Noordwijk, The Netherlands, 1994. URL:
ftp://ftp.estec.esa.nl/pub/vhdl/doc/ModelGuide.ps

4 VHDL Models for Board-level Simulation, S. Habinc
WSM/SH/010, European Space Agency,
Noordwijk, The Netherlands, 1996. URL:
ftp://ftp.estec.esa.nl/pub/vhdl/doc/BoardLevel.ps

5 Using VHDL for Board-Level Simulation, S. Habinc
& P. Sinander, IEEE Design & Test of Computers,
New York, USA, Fall 1996. URL:
ftp://ftp.estec.esa.nl/pub/vhdl/doc/BoardSim.ps

6 Built-In Test for VLSI: Pseudorandom Techniques,
P. H. Bardell et al., John Wiley & Sons, New York,
USA, 1987

More information on microelectronics and VHDL
simulation can be found on the ESA web pages at URL:
http://www.estec.esa.nl/wsmwww.

	Abstract
	1. INTRODUCTION
	2. WHAT IS BOARD-LEVEL SIMULATION?
	3. FUNCTIONAL ACCURACY
	4. SIMULATION PERFORMANCE
	5. EXAMPLES OF OPTIMISATION FOR SIMULATION PERFORMANCE
	6. VERIFICATION
	7. MAINTENANCE OF MODELS
	8. DISTRIBUTION OF MODELS
	9. EXPERIENCE USING MODELS
	10. SUMMARY
	11. REFERENCES

