Observations for other Positive Edge-Triggered D-FF

positive edge-triggered TSPC D-flip flop (non-split output)
Need to analyze for clock $=0$ (master sampling, slave holding), clock $0 \rightarrow 1$, clock $=1$:

clock	D	X	Y	\bar{Q}
0	0	1	1	$\bar{Q}_{\text {old }}$
0	1	0	1	$\bar{Q}_{\text {old }}$

Need to force $\bar{Q}_{\text {old }}$ to a "1". Can do it by $\quad \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$

Check other cases:

clock	D	X	Y	\bar{Q}
$0 \rightarrow 1$	0	$X_{\text {old }}(=1)$	0	1
$0 \rightarrow 1$	1	$X_{\text {old }}(=0)$	$Y_{\text {old }}(=1)$	0

For the above case where clock is going $0 \rightarrow 1$ and $D=0$, no reset is needed. In the second case above where clock is going $0 \rightarrow 1$ and $D=1$, we need to force $Y_{\text {old }}$ to be a zero when reset is asserted. How to do this?

Here's one way:

When clock $(\varnothing)=0 \rightarrow 1, R=0, \bar{R}=1$, then forces Y node $=0$. Even works when clock $=0$, can get rid of p MOS pullup on \bar{Q} output.

Will have to invert \underline{R} inside of circuit because R is low true, so final transistor count for adding asynchronous low true reset is $\underline{4}$.

Final circuit (positive edge-triggered TSPC D-flip flop with asynchronous, lowtrue reset):

Final transistor count $=15$. Recall again that a static D-flip flop can require 33 transistors!

Final check \rightarrow

$$
\begin{array}{ll}
X=X_{\text {old }} & Y=Y_{\text {old }} \\
Y=0 & \bar{Q}=1 \\
\bar{Q}=1 &
\end{array}
$$

$$
\begin{array}{rlrl}
X & =\overline{\mathrm{data}} & & Y=1 \\
Y & =0 & & \bar{Q}=\bar{Q}_{\text {old }}=1 \\
\bar{Q} & =1 &
\end{array}
$$

