Homework \#4
Consider the circuit below which consists of an n MOS device and a resistor R_{L}. The input voltage $\mathrm{V}_{\text {in }}$ can be varied from 0 V up to V_{DD}.

Derive an expression for the maximum value of $\mathrm{V}_{\text {out }}$. Then calculate this maximum $\mathrm{V}_{\text {out }}$. Do not neglect bulk bias effects. You may neglect channel length modulation. Since $\mathrm{V}_{\mathrm{T} n}$ is a function of $\mathrm{V}_{\text {out }}$, you will have to iterate to the solution. First guess a value for $\mathrm{V}_{\text {out }}$, calculate the corresponding value of $\mathrm{V}_{\mathrm{T} n}$, then recalculate $\mathrm{V}_{\text {out }}$ using the calculated $\mathrm{V}_{\mathrm{T} n}$ value, and compare "old" $\mathrm{V}_{\text {out }}$ to the "new" $\mathrm{V}_{\text {out }}$. Repeat this procedure until the "old" and "new" values of $\mathrm{V}_{\text {out }}$ agree within 10 mV . Record your iterations within a table. Use $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \beta_{n}=525 \mu \mathrm{~A} / \mathrm{V}^{2}, \gamma=0.36$ $\mathrm{V}^{1 / 2}, \mathrm{~V}_{\mathrm{TO} n}=0.80 \mathrm{~V}, 2\left|\emptyset_{\mathrm{F}}\right|=0.56 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=40 \mathrm{k} \Omega$. For convenience, the threshold expression is provided below.

$$
\mathrm{V}_{\mathrm{T} n}=\mathrm{V}_{\mathrm{TO} n}+\gamma\left(\sqrt{2\left|\emptyset_{\mathrm{F}}\right|+\mathrm{V}_{\mathrm{SB}}}-\sqrt{2\left|\emptyset_{\mathrm{F}}\right|}\right)
$$

