
Designer User’s Guide

R1-2003

Actel® Tools

Windows® and UNIX® Environments

ii

Actel® Corporation, Sunnyvale, CA 94086
© 2002 Actel Corporation. All rights reserved.

Part Number: 5029122-4

Release: December 2002

No part of this document may be copied or reproduced in any form or by any means
without prior written consent of Actel.

Actel makes no warranties with respect to this documentation and disclaims any implied
warranties of merchantability or fitness for a particular purpose. Information in this doc-
ument is subject to change without notice. Actel assumes no responsibility for any errors
that may appear in this document.

This document contains confidential proprietary information that is not to be disclosed
to any unauthorized person without prior written consent of Actel Corporation.

Trademarks
Actel and the Actel logotype, Action Logic, Activator, and Actionprobe are registered
trademarks of Actel Corporation.

Windows is a registered trademark of Microsoft in the U.S. and other countries.

Sun Workstations and Sun Microsystems are trademarks or registered trademarks of Sun
Microsystems, Inc.

Liberty is a licensed trademark of Synopsys Inc. This product uses SDC, a Proprietary
format of Synopsys Inc.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

All other products or brand names mentioned are trademarks or registered trademarks of
their respective holders.

Table of Contents

Introduction . xi
Document Organization . xi
Document Assumptions . xii
Platform Support . xii
Your Comments . xii
Online Help . xiii

1 Designer: Getting Started . 11
Starting Designer . 11
Initiating the Designer Session . 13
Designer. . 16
Designer’s Menu Commands . 17
Toolbar . 20
Log Window . 21
Status Bar . 22

2 Using Designer . 23
Starting and Initiating a Design Session 24
Importing Source Files . 27
Importing Auxiliary Files . 30
Importing PDC Files (Axcelerator family only) 33
Importing SDC Files . 35
Auditing Files . 37
Device Selection Wizard . 39
Compiling a Design . 44
Compile Options . 45
User Tools . 47
Place-and-Route Variables (Non-ProASIC and ProASIC PLUS Families)
49
Layout . 50
Layout Options . 53
Layout Failures . 57
iii

Table of Contents
Back-Annotation . .58
Generating Programming Files .60
Changing Design Name and Family65
Changing Design Information . .66
Exporting Files . .67
Generating Reports .72
Setting Designer Preferences .83
Starting other Applications from Designer 86
Saving a Design .87
License Details . .88
Ending the Designer Session .88

3 Scripting .89
Tcl Overview. .89
Tcl Extension Commands Added by Designer 95
PDC Commands . 100
SDC Commands . 104
Tcl Commands for Timer . 107
Tcl Commands for PinEdit . 111
Running Scripts from the Command Line 113
Running Scripts within Designer . 114
Recording Scripts . 114
Example Scripts . 116

A Constraints in ProASIC and ProASIC PLUS Devices . . . 121
Types of Constraints . 121
ProASIC Timing Constraints . 121
Highlevel Timing Constraints . 122
Timing Constraints. . 125
Global Resource Constraints . 127
Netlist Optimization Constraints . 132
Constraint Quick Reference . 141
Constraint File Syntax Summary. . 142
iv

Table of Contents
B Setting Up a Printer in UNIX 149

C Product Support . 155
Actel U.S. Toll-Free Line . 155
Customer Service . 155
Actel Customer Technical Support Center 155
Guru Automated Technical Support 156
Web Site. 156
Contacting the Customer Technical Support Center 156
Worldwide Sales Offices . 158

Index . 159
v

List of Figures

Designer Software . 12
Setup Design Dialog Box . 13
Open Design Dialog Box . 14
Designer, Design Session Initiated (PC Version) 16
Designer Toolbar . 20
Design Tools Toolbar . 20
Log Window All Anti-fuse Families . 21
Starting Designer . 24
Setup Design Dialog Box . 25
Open Design Dialog Box . 26
Import Source Files Dialog Box . 28
Add Source File Dialog Box . 29
Import Source Files Dialog Box with EDIF File Added 29
Import Auxiliary Files Dialog Box . 31
Add Auxiliary Files . 31
File Added to the Import Auxiliary Files Dialog 32
Importing a PDC File Dialog Box . 34
Selecting the PDC Files . 34
PDC File Added to the Import Auxiliary Files Dialog 35
Import Auxiliary Files Dialog Box . 36
Adding an SDC File . 36
Audited File is Out of Date Dialog Box 37
Update Audit Source Files Dialog Box . 38
Device Selection Dialog Box . 39
Device Selection Wizard, Device Variations (Screen Varies Depending Upon
Device) . 40
Device Selection Wizard - Variations for the Axcelerator Family 41
Device Selection Wizard, Operating Conditions 42
Compile Options Dialog Box, Axcelerator Family 45
Compile Options Dialog Box, SX Family 45
Set Variable Dialog Box . 49
Axcelerator Layout Options Dialog Box 51
vii

List of Figures
Other Anti-fuse Families Layout Options Dialog Box 52
ProASIC and ProASIC PLUS Options Dialog Box 52
Advanced Layout Options (SX, SX-A, and eX)53
BackAnnotate Dialog Box .59
Generate Fuse File Dialog Box .61
Bitstream Generation Dialog Box .64
Setup Design Dialog Box .65
Bitstream Export Options Dialog Box .68
Exporting Your PDC File .69
Export Timing Files Dialog Box . .70
Timing Preferences Dialog Box .71
Report Type Dialog Box . .72
Timing Report Dialog Box . .73
Timing Preferences Dialog Box .74
Timing Report .76
Pin Report Dialog Box . .77
Pin Report .78
Flip-Flop Report Dialog Box .79
Flip-Flop Extended Report .79
Flip-Flop Summary Report .80
Power Report Dialog Box .81
Power Preferences Dialog Box . .82
Directory Preferences Dialog Box . .83
Internet Tab (in Preferences Dialog Box) 84
File Association Tab .85
Customize Dialog Box .86
License Details Dialog Box .88
Execute Script Dialog Box . 114
Export Tcl Script Files Dialog Box . 115
Script Export Options Dialog Box. . 115
Global Resource Promotion Scheme . 128
Pad Locations . 136
Print Dialog Box . 149
viii

List of Figures
Printer Setup Dialog Box . 149
Printer Installation Dialog Box . 150
Add Printer Dialog Box . 150
ix

List of Figures
x

Introduction

The Designer User’s Guide contains an overview of Actel’s Designer software
and the design implementation process.

Document Organization
This guide provides detailed cross-platform information about Designer. Use it
as a reference in your everyday work.

Step-by-step instructions for using Designer on Windows and Unix
workstations are included in this guide. Any platform differences in procedures
and commands are noted in the text.

The Using Designer Guide is divided into the following chapters:

Chapter 1 - Getting Started with Designer explains how to invoke and
initiate a Designer session and describes Designer’s interface, toolbars, and
menu commands.

Chapter 2 - Using Designer describes how to use the Designer software to
optimize and implement designs to program Actel devices.

Chapter 3 - Scripting contains information on using Tcl inside Designer. A
list of all Designer Tcl extension commands is provided.

Appendix A - Using Constraints in ProASIC and ProASICPLUS
Devices explains how to create a ProASIC constraint file (.gcf), which can
then be imported into Designer.

Appendix B - Setting up a Printer on UNIX contains directions on how
to set your printer up to work with Designer.

Appendix C - Product Support describes our support services.

Appendix D - Revision History contains information on changes made to
this guide.
xi

Introduction
Document Assumptions
The information in this manual is based on the following assumptions:

1. You have installed the Designer Series software.

2. You are familiar with UNIX workstations and UNIX operating systems, or
with PCs and Windows operating environments.

3. You are familiar with FPGA architecture and FPGA design software.

Platform Support
Supported Platforms include:

PC

• WinNT 4.0 SP6

• Win2000 SP1

• Win98 2nd Edition

• Windows XP

HP

• HP-UX 11.0

Solaris

• Solaris 7

• Solaris 8

Your Comments
Actel Corporation strives to produce the highest quality online help and printed
documentation. We want to help you learn about our products and get your
work done quickly. We welcome your feedback about this guide and our online
help. Please send your comments to docs@actel.com.
xii

Introduction
Online Help
Designer comes with online help. Online help specific to each Actel software
tool is available.
xiii

Introduction
xiv

1
Designer: Getting Started

This chapter will familiarize you with Designer’s graphical user interface and
associated menu commands. For more information on how to use Designer,
refer to “Using Designer” on page 23.

Starting Designer

To start Designer:

1. On a PC

Choose Designer from the Designer group in the Programs menu under
the Start menu.

On Unix

Type the following command at the prompt:

<location of Actel software>/bin/designer

Designer opens. If this is your first time using Designer, you are asked if you
would like to associate the *.adb file type with Designer. You are also asked
if you would like to check for a software update. After making your
15

Chapter 1: Designer: Getting Started
selections, Designer opens and is ready for you to begin, as shown in Figure
1-1.

Figure 1-1. Designer Software
16

Initiating the Designer Session
Initiating the Designer Session
To begin a design session, you must start a new design or open an existing
design file.

Starting a New
Design

1. Click the Start New Design button in the main window, or in
the File menu, click New. This displays the Setup Design dialog box,
as shown in Figure 1-2.

Figure 1-2. Setup Design Dialog Box

2. Setup Design.

• Enter a Design Name. The design name is used in reports and as the
default name when saving or exporting files.

• Select an Actel product Family from the drop down menu list.

• Specify a working directory.

3. Click OK.

Designer’s custom design flow window appears (as shown in Figure 1-4 on
page 20). All Designer’s tools and commands are activated.
17

Chapter 1: Designer: Getting Started
Opening an
Existing Design

Designer can open designs that have previously been saved, including designs
from previous versions of Designer (refer to the next section, “Opening
Designs Created in Previous Versions of Designer”).

To open an existing design:

1. Click the Open Existing Design button or in the File menu,
click Open. This displays the Open dialog box (Figure 1-3).

Figure 1-3. Open Design Dialog Box

2. Select File. Type the full path name of the.ADB file in the File Name box,
or select the file from the list.

3. Click Open.

Note: When you open an existing design, Designer checks to see if you have
modified your netlist since the last time you imported the netlist into
this design. If you have, Designer prompts you to re-import your
netlist.

Designer’s custom design flow window appears (as shown in Figure 1-4 on
page 20) and all tools commands are activated.
18

Initiating the Designer Session
Opening
Designs
Created in
Previous
Versions of
Designer

Designer can directly open designs created with previous versions of the
Designer software.

Note: If your design was created in version 3.1 or earlier, contact Actel
Technical Support or go to http://www.actel.com/support for
information on converting your design.

All existing die, package, pin assignment, and place-and-route information is
read and maintained. Designs created in previous versions of software may
need library conversions when loaded into the Designer environment. If your
design requires this conversion, Designer prompts you to allow the software to
update the design to the new library before you attempt to start any of the
Designer features.
19

Chapter 1: Designer: Getting Started
Designer
Once you have initiated the design session, Designer displays a design flow
specific to the family selected in the Setup Design Dialog Box.

Figure 1-4. Designer, Design Session Initiated (PC Version)

The Design Flow window guides you through the development process, filling
in completed steps. The message window displays status and error messages.

Menu Bar ToolbarsView Bar

User ToolsLog
Window

Status Bar

Design Flow Window
20

Designer’s Menu Commands
Designer’s Menu Commands
Menu commands are different between the PC and UNIX platforms.
Differences are noted below. Dialog boxes may look slightly different on the
two platforms due to the different window environments. The functionality is
the same on both platforms, though the locations of the fields and buttons on
the dialog boxes may vary. The names of some fields may also vary between the
PC and Unix versions

File Menu New: Creates a new design.

Open: Opens an existing design, an *.adb file.

Close: Closes the design.

Save: Saves the design.

Save As: Saves the design with a new name.

Execute Script: Executes a batch script.

Import Source Files: Imports netlist and constraint files.

Import Auxiliary Files: Add, modify or delete associated criticality, SDC,
PIN, SAIF, Physical Design Constraint Files (PDC), DCF, and VCD files.

Audit Settings: Changes audit settings for imported source files.

Export: Netlist: Exports the design netlist.

Export: Auxiliary Files: Exports pin, constraint, and BSDL, and placement
files.

Export: Fuse: Exports file required to program an antifuse device.

Export: Bitstream: Exports file required to program a ProASIC or
ProASICPLUS device.

Export: Timing Files: Exports timing data for Backannotation.

Export: Script Files: Exports a script file.

Export: Log Files: Exports a log of the current session.

Preferences: Sets design, internet and proxy preferences.
21

Chapter 1: Designer: Getting Started
Recent Files: Lists recent files.

Exit: Exits Designer.

View Menu Toolbar: Displays or hides the Toolbar.

Design Tools: Displays or hides the Design Tools toolbar.

Log Window: Displays or hides the log window.

Status Bar: Displays or hides the Status Bar.

Tools Menu Setup Design: Selects design name, family, and working directory.

Device Selection: Defines die, package, and other parameters.

Compile: Compiles the loaded design.

Layout: Runs layout on the loaded design.

Back-Annotate: Generates delay data.

Fuse: Generates fuse data for antifuse devices.

Bitstream: Generates a bitstream file for ProASIC and ProASICPLUS devices.

PinEdit: Starts PinEdit.

ChipEdit: Starts ChipEdit.

Netlist Viewer: Starts the Netlist Viewer tool.

Timer: Starts Timer for static timing analysis.

SmartPower: Starts the power analysis tool.

Reports: Generates status, timing, pin flip-flop, and timing violation reports.

Software Update: Checks Actel website for latest software updates.

Customize: Adds custom macros to Designer’s tools menu (PC Only).
22

Designer’s Menu Commands
Options Menu Netlist Import: EDIF Naming: Sets default EDIF import options.

Netlist Import: ADL Naming: Sets default ADL import naming style.

Compile: Sets compile options specific to each family.

Get Variable: Displays a selected variable’s value.

Set Variable: Sets a selected variable’s value.

Clear Log: Clears the session log.

Window
(PC Only)

Arrange Icons: Arrange icons at the bottom of the Design window.

Cascade: Arrange windows in the Design window so they overlap.

Tile Horizontally: Arrange windows in the Design window as non-
overlapping tiles.

Tile Vertically: Arrange windows in the Design window as non-overlapping
tiles.

Close Design: Closes the current design.

Help Menu Help Topics: Lists help topics.

Reference Manual: Lists available online manuals.

Actel on the Web: Starts your internet browser and opens the Actel website
or the Actel Product Support Portal.

License Details: Displays information about your license.

About Designer: Displays program information and current version.
23

Chapter 1: Designer: Getting Started
Toolbar
Frequently used commands are available from Designer’s toolbars. Use the
View menu to display or hide these toolbars.

If you position the mouse pointer over a toolbar button, a short description
(called a tool tip) appears next to the button and a longer description appears in
the status bar at the bottom of the main window.

Figure 1-5. Designer Toolbar

Figure 1-6. Design Tools Toolbar

New Save

Open About

Compile

Layout PinEdit

ChipEdit

Timer

Smart Power

Netlist Viewer

Back-Annotate

Fuse
24

Log Window
Log Window
For ProASIC and ProASICPLUS families the log window displays notes and
warnings. For Antifuse families, the log window displays error, warning, and
informational messages. Messages are represented by symbols and color coded:

While the Output tab displays everything, you can filter for errors, warnings, or
informational messages by clicking the other tabs. The views within the error,
warnings, and infos displays are reset when a new command is executed or a
new design is opened. To see a complete history of your design session(s), click
the output tab.

Figure 1-7. Log Window All Anti-fuse Families

Table A-1.

Type Symbol Color

Error Red

Warning Blue

Information Black

Linked Error Message

Filter Tabs
25

Chapter 1: Designer: Getting Started
Error and warning messages that are dark blue and underlined are linked to
online help to provide you with more details or helpful workarounds.

Status Bar
As you roll your mouse over commands, tool tips appear in the left part of the
status bar. Family, die, and package information always appear in the left corner
of the status bar.
26

2
Using Designer

This chapter contains information on how to use Designer. For an overview of
Designer’s interface and commands, please refer to “Designer: Getting Started”
on page 15. This chapter covers the general design flow process for
implementing your design, including:

• Starting and Initiating a Design Session on page 24

• Importing Source Files on page 27

• Importing Auxiliary Files on page 30

• Importing PDC Files (Axcelerator family only) on page 33

• Importing SDC Files on page 35

• Auditing Files on page 37

• Device Selection Wizard on page 39

• Compiling a Design on page 44

• Compile Options on page 45

• User Tools on page 47

• Layout on page 50

• Layout Failures on page 57

• Back-Annotation on page 58

• Generating Programming Files on page 60

• Changing Design Name and Family on page 65

• Exporting Files on page 67

• Generating Reports on page 72

• Setting Designer Preferences on page 83

• Starting other Applications from Designer on page 86

• Saving a Design on page 87

• License Details on page 88

• Ending the Designer Session on page 88
23

Chapter 2: Using Designer
Starting and Initiating a Design Session
Before you implement a design, you must start Designer and initiate a design
session.

To start Designer:

From the Start menu, click Programs. From the Programs menu, select
Designer and Click Designer Series.

Unix

Type the following command at the prompt:

<location of Actel software>/bin/designer

Designer opens and is ready for you to initiate your Designer Session, as
shown in Figure 2-1.

Figure 2-1. Starting Designer
24

Starting and Initiating a Design Session
After starting Designer, you are ready to begin your design session. Begin the
design session by starting a new design or opening an existing design file.

Starting a New
Design

1. Click the Start New Design button in the main window, or in
the File menu, click New. This displays the Setup Design dialog box,
as shown in Figure 2-2.

Figure 2-2. Setup Design Dialog Box

2. Setup Design.

• Enter a Design Name. The design name is used in reports and as the
default name when saving or exporting files.

• Select an Actel product Family from the drop down menu list.

• Specify a working directory. (Do not use spaces in the directory name.)

3. Click OK.

Designer’s custom design flow window appears (as shown in Figure 1-4 on
page 20). All Designer’s tools and commands are activated.
25

Chapter 2: Using Designer
Opening an
Existing Design

Designer can open designs that have previously been saved, including designs
from previous versions of Designer (refer to the next section, “Opening
Designs Created in Previous Versions of Designer”).

To open an existing design:

1. Click the Open Existing Design button or in the File menu,
click Open. This displays the Open dialog box (Figure 2-3).

Figure 2-3. Open Design Dialog Box

2. Select File. Type the full path name of the.ADB file in the File Name box,
or select the file from the list.

3. Click Open.

Note: When you open an existing design, Designer checks to see if you have
modified your netlist since the last time you imported the netlist into
this design. If you have, Designer prompts you to re-import your
netlist.

Designer’s custom design flow window appears (as shown in Figure 1-4 on
page 20) and all tools commands are activated.
26

Importing Source Files
Opening
Designs
Created in
Previous
Versions of
Designer

Designer can directly open designs created with previous versions of the
Designer software.

Note: If your design was created in version 3.1 or earlier, contact Actel
Customer Technical Support or go to http://www.actel.com/support for
information on converting your design.

All existing die, package, pin assignment, and place-and-route information is
read and maintained. Designs created in previous versions of software may
need library conversions when loaded into the Designer environment. If your
design requires this conversion, Designer prompts you to allow the software to
update the design to the new library before you attempt to launch any of the
Designer features.

Importing Source Files
Design implementation begins with importing source files. Source files include
your netlist and constraint files, such as the files in Table 2-1:

Table 2-1. Source Files

File Type Extension

EDIF *.ed*

Verilog *.v

VHDL *.vhd

Actel ADL Netlist *.adl

Criticality *.crt

Flash Constraint File *.gcf

Physical Design Constraint
File .pdc
27

Chapter 2: Using Designer
The choice of source files is family dependent. Only supported source files are
displayed in the Import Source dialog box. If you are working on a new design
or if you have changed your netlist, then you must re-import your netlist into
Designer.

To import a source file:

1. In the File menu, click Import Source Files. This displays the
Import Source Files dialog box, as shown in Figure 2-4.

Figure 2-4. Import Source Files Dialog Box
28

Importing Source Files
2. Click the Add button. The Add Source Files dialog appears,as shown in
Figure 2-5.

Figure 2-5. Add Source File Dialog Box

3. Select your EDIF netlist and click Import. The File is added to the
Import Source Files dialog box.as shown in Figure 2-6.

Figure 2-6. Import Source Files Dialog Box with EDIF File Added

4. Add any more source files to the list. All files added to the Import
Source Files dialog box are imported at the same time.

If you need to modify a selection, select the file row and click Modify.
29

Chapter 2: Using Designer
If you need to delete a file, select the file row and click Delete.

5. Ordering your source files. Select and drag your files to specify the
import order. Specifying a priority is useful if you are importing multiple
netlist files, .gcf files, or .pdc files. When importing multiple EDIF or
structural HDL files, the top-level file must appear last in the list (at the
bottom).

6. After you are done adding all your source files, click OK. Your
source files are imported. Any errors appear in Designer’s Log Window.

Note: Do not use spaces in your file or path names. Rename the file or
path, removing the spaces, and re-import.

Importing Auxiliary Files
Auxiliary Files include are listed in Table 2-2:

Note: .vcd and .saif are used by SmartPower for power analysis. Refer to the
SmartPower User’s Guide for more details about performing power analysis.

Note: Criticality (.crt) is a legacy file format. It is supported for the following
famiies: ACT1, ACT2, ACT3, 40MX, and 42MX.

Table 2-2. Auxiliary Files

File Type Extension

Criticality *.crt

PIN *.pin

SDC *.sdc

Physical Design Constraint *.pdc

Value Change Dump *.vcd

Switching Activity Interchange Format *.saif

Design Constraint File *.dcf
30

Importing Auxiliary Files
To import an auxiliary file:

1. From the File menu, click Import Auxiliary Files. The Import
Auxiliary Files dialog appears, as shown in Figure 2-7.

Figure 2-7. Import Auxiliary Files Dialog Box

2. Click the Add button. The Add Auxiliary Files dialog box appears, as
shown in Figure 2-8.

Figure 2-8. Add Auxiliary Files

Filter for files by using the Files of Type drop-down list box.
31

Chapter 2: Using Designer
3. Select your file and click Import. The file is added to the
Import Auxiliary Files dialog box, as shown in Figure 2-9.

Figure 2-9. File Added to the Import Auxiliary Files Dialog

4. Continue to add more auxiliary files to the list.

• To modify a selection, select the file row and click Modify.

• To delete a file, select the file row and click Delete.

5. Ordering your source files. Select and drag your files to specify the
import order. Specifying a priority is useful if you are importing multiple
netlist files, .gcf files, or .pdc files.

6. After you are done adding all your Auxiliary files, click OK.
Your auxiliary files are imported. Any errors appear in Designer’s Log
Window.

Note: File names or paths with spaces may not import into Designer.
Rename the file or path, removing the spaces, and re-import.

32

Importing PDC Files (Axcelerator family only)
Importing PDC Files (Axcelerator family only)
The Physical Design Constraint (PDC) file can specify:

• I/O standards and features

• VCCI and VREF for all or some of the banks

• Pin assignments

• Placement locations

• Net criticality

The Axcelerator family of devices supports multiple I/O standards (with
different I/O voltages) in a single die. You can use ChipEdit and PinEdit to set
I/O standards and attributes, or alternatively you can export and import this
information in a PDC file.

Physical Design Constraint (PDC) files are TCL script files. For information on
TCL, see “Scripting” on page 89. PDC commands, syntax, and examples are
listed on page page 100.

PDC files are only supported for the Axcelerator family of devices. The PDC
file replaces the PIN file.
33

Chapter 2: Using Designer
To import a PDC file:

1. From the File menu, click Import Auxiliary Files. The Import
Auxiliary Files dialog appears, as shown in Figure 2-10.

Figure 2-10. Importing a PDC File Dialog Box

2. Click the Add button. The Add Auxiliary Files dialog box appears, as
shown in Figure 2-11.

Figure 2-11. Selecting the PDC Files

Filter for your PDC file by selecting Physical Design Constraint Files (*.pdc)
from the Files of Type drop-down list box.
34

Importing SDC Files
3. Select the PDC file and click Import. The file is added to the
Import Auxiliary Files dialog box, as shown in Figure 2-12.

Figure 2-12. PDC File Added to the Import Auxiliary Files Dialog

4. Click OK. The PDC file is imported into Designer. Any errors appear in
the Log Window.

Note: File names or paths with spaces may not import into Designer.
Rename the file or path, removing the spaces, and re-import.

Importing SDC Files
Synopsys Design Constraints (SDC) files can be imported into Designer, to be
read by Timer. SDC is a widely used format that allows designers to utilize the
same sets of constraints to drive synthesis, timing analysis, and place-and-route.

SDC is a Tcl based format constraint file. The commands of an SDC file follow
the Tcl syntax rules. Designer accepts an SDC constraint file generated by a
third-party tool. This file is used to communicate design intent between tools
and provide clock and delay constraints. The Synopsis Design Compiler, Prime
Time, and Synplicity tools can generate SDC descriptions or the user can
generate the SDC file manually.

For more information on supported SDC commands and limitations, see “SDC
Commands” on page 104.
35

Chapter 2: Using Designer
Importing SDC
Files

To import an SDC file:

1. From the File menu, click Import Auxiliary Files. The Import
Auxiliary Files dialog box is displayed, as shown in Figure 2-13

Figure 2-13. Import Auxiliary Files Dialog Box

2. Click Add. The Add Auxiliary Files dialog box appears, as
shown in Figure 2-14 .

Figure 2-14. Adding an SDC File

3. Select your SDC file. Filter for SDC files by selecting SDC Files in the
Files of Type drop-down list box.
36

Auditing Files
4. Click Import. The SDC file is added to the Import Auxiliary Files dialog
box.

5. Click OK in the Import Auxiliary Files dialog box. The SDC file
is imported into your design. Any errors appear in the Log Window.

Note: File names or paths with spaces may not import into Designer.
Rename the file or path, removing the spaces, and re-import.

Auditing Files
Designer audits your source files to ensure that your imported source files are
current. All imported source files are date and time stamped. Designer notifies
you if the file is changed, as shown in Figure 2-15.

Figure 2-15. Audited File is Out of Date Dialog Box

When notified, select the appropriate action and click OK. To disable auditing,
follow the steps below.
37

Chapter 2: Using Designer
To change your audit settings:

1. From the File menu, click Audit Settings. The Audit Settings dialog
box appears, as shown in Figure 2-16.

Figure 2-16. Update Audit Source Files Dialog Box

Audit Timestamp reflects the last time/date that the import source or
audit update was successfully done.

2. Disable auditing by un-checking the audit check box next to
the file.

Time-stamp

Uncheck to
disable auditing
feature
38

Device Selection Wizard
Device Selection Wizard
After you import your source files, the Device Selection Wizard helps you
specify the device, package, and other operating conditions. (You must
complete these steps before your netlist can be compiled. Starting compile
without completing the device selection automatically starts the Device
Selection Wizard.) To change this information for existing designs, refer to
“Changing Design Name and Family” on page 65 and “Changing Design
Information” on page 66.

To select device, package, and other operating conditions:

1. In the Tools menu, click Device Selection. The Device Selection
Wizard starts, as shown in Figure 2-17.

Figure 2-17. Device Selection Dialog Box

2. Select die and package. Select a die from the Die list. Available
packages are listed for each die. Select a package.

3. Specify speed and die voltage. Select from the available settings in the
Speed Grade and Die Voltage drop-down menus. Two numbers separated
39

Chapter 2: Using Designer
by a “/” are shown if mixed voltages are supported. If two voltages are
shown, the first number is the I/O voltage and the second number is the
core (array) voltage.

4. Click Next. The Device Selection Wizard prompts you to set Variations,
as shown in Figure 2-18.

Figure 2-18. Device Selection Wizard, Device Variations (Screen Varies Depending Upon
Device)

5. Set device variations.

Note: Reserve Pins are not selectable for the Axcelerator, ProASIC, and
ProASIC PLUS families.

Reserve Pins:

• Check the Reserve JTAG box to reserve the JTAG pins “TDI,” “TMS,”
“TCK,” and “TDO” during layout.

• Check the Reserve JTAG Reset box to reserve the JTAG reset Pin
“TRST” during layout.
40

Device Selection Wizard
• Check the Reserve Probe box to reserve the Probe pins “PRA,” “PRB,”
“SDI,” and “DCLK” during layout. (Probe pins are family dependent.)

The I/O Attributes section notifies you if your device supports the
programming of I/O attributes on a per-pin basis.

For the Axcelerator family, the I/O Attribute section allows you to set the
default I/O standard for the I/O banks, as shown in Figure 2-19.

Figure 2-19. Device Selection Wizard - Variations for the Axcelerator Family

Use PinEdit to assign different I/O standards to different I/O banks, if
necessary. (Refer to the PinEdit User’s Guide for more information on
assigning I/O attributes.)
41

Chapter 2: Using Designer
6. Click Next. The Device Selection Wizard prompts you to set the
Operating Conditions.

Figure 2-20. Device Selection Wizard, Operating Conditions

7. Set Operating Conditions and Click Finish. Use the Operating
Conditions dialog box (see Figure 2-20) to define the voltage and
temperature ranges a device encounters in a working system. Supported
ranges include standard industry temperature and voltage ranges, including
commercial (COM), industrial (IND), and military (MIL). This displays
supported ranges. Select Custom in the pull-down menu to specify a custom
range. The operating condition range entered in the Operating Conditions
dialog box is used by Timer, the timing report, and the back-annotation
function. These tools enable you to analyze worst, typical, and best case
timing. The operating conditions are summarized in Table 2-3.
42

Device Selection Wizard

The temperature range represents the junction temperature of the device.
For commercial and industrial devices, the junction temperature is a
function of ambient temperature, air flow, and power consumption. For
military devices, the junction temperature is a function of the case
temperature, air flow, and power consumption. Because Actel devices are
CMOS, power consumption must be calculated for each design. For most
low power applications (e.g. 250mW), the default conditions should be
adequate. You can calculate junction temperature from values in the Actel
Data Sheet, available at http://www.actel.com/techdocs/ds/index.html.
Performance decreases approximately 2.5% for every 10 degrees C that the
temperature values increase. For Axcelerator, ProASIC, and the
ProASICPLUS families please use SmartPower for more accurate power
consumption estimation. Refer to the SmartPower User’s Guide for more
information about power consumption.

Temperature Range

Select a supported temperature range from the pull-down menu (COM,
IND, MIL or Custom). If you select Custom, edit the Best, Typical, and
Worst fields. Modify the range to the desired value (real) such that Best <
Typical < Worst.

Voltage Range

Select a voltage range from the pull-down menu (COM, IND, MIL or
Custom). If you select Custom, edit the Best, Typical, and Worst fields.
Modify the range to the desired value (real) such that Best ≥ Typical ≥
Worst. The top row indicates core (array) voltage, or both core and array
voltages if they are the same. The lower row shows the I/O voltage for
mixed voltage devices, and is ignored for non-mixed voltage devices.

Table 2-3. Operating Conditions

Timing Process Temperature Voltage

Best Case Best Best Best

Typical Case Typical Typical Typical

Worst Case Worst Worst Worst
43

Chapter 2: Using Designer
Compiling a Design
After you import your netlist file(s) and select your device, you must compile
your design. Compile contains a variety of functions that perform legality
checking and basic netlist optimization. Compile checks for netlist errors (bad
connections and fan-out problems), removes unused logic (gobbling), and
combines functions to reduce logic count and improve performance. Compile
also verifies that the design fits into the selected device.

There are three ways to select the compile command:

• In the Tools menu, click Compile.

• Click the Compile button in the Design Flow.

• Click the compile icon in the toolbar.

If you have not already done so, Designer’s Device Selection Wizard prompts
you to set the device and package. See “Device Selection Wizard” on page 39
for information on the Device Selection Wizard.

During compile, the message window in the Main window displays information
about your design, including warnings and errors. Designer issues warnings
when your design violates recommended Actel design rules. Actel recommends
that you address all warnings, if possible, by modifying your design before you
continue.

If the design fails to compile due to errors in your input files (netlist,
constraints, etc.), you must modify the design to remove the errors. You must
then re-import and re-compile the files.

After you compile the design, you can run Layout to place-and-route the design
or use the User Tools (PinEdit, ChipEdit, ProASIC Layout Viewer, Timer,
SmartPower, or Netlist Viewer) to perform additional optimization prior to
place-and-route.
44

Compile Options
Compile Options
The compile options are specific to each family. Compile options are not
available for the ProASIC and ProASIC PLUS families.

To set compile options:

1. From the Options menu, click Compile. The compile option dialog
box opens, as shown in Figure 2-21 and as shown in Figure 2-22. Options
available from this dialog box are dependent upon your family.

2. Select your options and click OK. Options are explained below.

Figure 2-21. Compile Options Dialog Box, Axcelerator Family

Figure 2-22. Compile Options Dialog Box, SX Family
45

Chapter 2: Using Designer
Netlist Pin
Properties
Overwrite
Existing
Properties

During the Compile process, Designer checks the netlist properties. If the
netlist file specifies a pin assignment for a pin that was also assigned in PinEdit
session, there is a conflict. How this conflict is resolved is determined by your
selection in this box.

• If this option is off, or unchecked, then Designer uses the assignment made
in PinEdit and the assignment in the netlist file for the conflicting pin is
ignored.

• If this option is on, or checked, then Designer uses the assignment in the
netlist file for that pin and the PinEdit assignment is ignored.

If you edit pin assignments in PinEdit, this option is automatically set to "off."

Combine
Registers into
I/Os

The Axcelerator family includes an optional register on the input path, an
optional register on the output path, and an optional register on the 3-state
control pin.

Select the option Combine Registers into I/Os where possible to take advantage of
these registers.

Abort on PDC
Error

Axcelerator family only. Setting Abort on PDC Error aborts the PDC import
when an error is encountered. When this box is checked, the PDC file is either
imported fully or the design is left untouched.

Fanout
Messages

Use the control slider in the Messages area to control the warning level for
fanout. Use the control slider to specify the fanout limit that the Compile step
checks against. Setting the control slider to '0' informs the system to use the
system defaults. Any non-zero value replaces the system default value for the
fanout limit with the user-specified value. Typically, this value range is 1 to 24.

This does not adjust the fanout of the design and it has no effect on the netlist.
This only adjusts the warning level, by controlling what level of fanout checking
you want to be warned about during Compile. Changing this fanout limit
option does not invalidate the Compile design state.

Note: This option is available for non Axcelerator, ProASIC and ProASIC
PLUS.
46

User Tools
User Tools
After importing and compiling your design, you can, if necessary, optimize and
customize your design with the User Tools before running Layout. The User
Tools include PinEdit, ChipEdit, ChipView, Netlist Viewer, SmartPower,
Timer, and Back-Annotate. Below is a brief summary of the User Tools.
Specific details on using these tools can be found in their respective User’s
Guides.

PinEdit Use PinEdit to customize I/O assignments and attributes.

There are two methods for I/O signal placement. You can let Designer
automatically assign I/O locations during Layout, or you can manually assign
I/O locations prior to Layout.

For non-Axcelerator families Actel recommends that you let Designer
automatically assign I/O locations during Layout. You can then use PinEdit to
optimize your design, if needed. Layout is designed to place the I/Os for
optimum routability and performance. Refer to “Layout” on page 50 for
information about automatically assigning I/O locations during place-and-
route.

When targeting the Axcelerator family and individual I/O bank configuration is
needed, you must use PinEdit to assign I/O standards to each bank before running
Layout.

Manually assign I/O locations in your design schematic, in imported files, or by
using PinEdit. Imported files can include PIN files (non-Axcelerator families),
PDC files (Axcelerator family only), or GCF files (ProASIC and ProASICPLUS
families only).

Refer to documentation included with your CAE tools for information about
assigning I/O signal placement in a schematic or in a pin file. Refer to the
PinEdit’s User’s Guide for more information on using PinEdit.

ChipEdit Use ChipEdit to view and edit the placement of both I/O and logic macros.
Refer to the ChipEdit’s User’s Guide for more information on using ChipEdit.
47

Chapter 2: Using Designer
Note: For the Axcelerator family, you must use ChipEdit before running Layout
to place the I/O FIFO Block Controllers. ChipEdit does not support the
ProASIC and ProASICPLUS families.

ChipView
(ProASIC and
ProASICPLUS
families only)

For the ProASIC and ProASICPLUS families, ChipView displays the results of
place-and-route. These results provide information to guide later place-and-
route operations, if necessary. The window creates no new data. It displays the
design layout and is used for identifying problems and providing insights to
solve them. Refer to the ChipEdit’s User’s Guide for more information on using
the ChipViewer.

Timer Timer performs static timing analysis on your design. Use Timer to analyze
timing performance and set timing constraints. If you want to run Timing-
Driven Layout, you must use Timer to set and commit timing constraints.

Netlist Viewer The Netlist Viewer displays a graphical representation of the netlist. Use it in
conjunction with ChipEdit and Timer to locate objects and to trace paths. Refer
to the Netlist Viewer User’s Guide for more information.

SmartPower SmartPower calculates the power consumption of the currently loaded design.
Refer to the SmartPower User’s Guide for more information.

Back-Annotate The backannotation function is used to extract timing delays from your post
layout data. These extracted delays are put into a file to be used by your CAE
packages timing simulator. Refer to “Back-Annotation” on page 58 of this
User’s Guide for more information.
48

Place-and-Route Variables (Non-ProASIC and ProASIC PLUS Families)
Place-and-Route Variables (Non-ProASIC and ProASIC
PLUS Families)

Use the Set Variable dialog box to set a variable or use Actel scripting to set
variables. (For information in scripting commands, refer to “Scripting” on page
89.) Variables must be set before running layout.

To set a variable:

1. From the Options menu, click Set Variable. The Set Variable
dialog box appears as shown in Figure 2-23.

Figure 2-23. Set Variable Dialog Box

2. Enter a Variable Name and Value. Variables and their values include
the following:

PLACESEEDRANDOM

Place-and-route uses several different inputs to determine where to start
with the algorithms. Some of the inputs include: pin placement, device
and package, previously placed macros, timing constraints, etc. In
addition, there is another user-definable input called the SEED. This
variable enables you to get a different result without changing any of the
other place-and-route inputs. This can be valuable for designs that
marginally fail to place-and-route. Set this variable to any value between
1 and (2^31) -1 before running Layout. A script to automatically run
Layout with different seeds can be found in “Extended Layout” on page
118.

PLACEACCEPTHINTS (Non-Axcelerator Families)
49

Chapter 2: Using Designer
This variable enables you to use the contents of a .loc file as a starting
point for layout. The .loc file contains all the placement information for
a design. Using this variable is similar to using incremental ON, and
should only be used as a last resort for design conversion situations. Make
sure the .loc file has the same name as your design and place it in the
directory of the design you are working on. Then set this variable to ‘1’
and run Layout.

Layout
After you compile, the design is ready for layout. Layout takes the netlist
information and any constraints and maps this information into the selected
Actel device. Layout assigns physical locations to unassigned I/O and logic
modules (placement), routing tracks to nets (routing), and calculates detailed
delays for all paths (extract).

Designer supports two modes of layout, Standard and Timing-Driven. The
physical result of each approach is similar, but the tools and algorithms are
quite different. In either mode, the incremental placement option allows you to
save the performance of a successfully placed and routed design, even if you
change the netlist.
50

Layout
To layout your design.

1. There are three ways to initiate the Layout command:

• In the Tools menu, click Layout.

• Click the Layout button in the Design Flow.

• Click the Layout icon in the toolbar.

This displays the Layout Options dialog box, as shown in
Figure 2-24.

Figure 2-24. Axcelerator Layout Options Dialog Box
51

Chapter 2: Using Designer
Figure 2-25. Other Anti-fuse Families Layout Options Dialog Box

Figure 2-26. ProASIC and ProASIC PLUS Options Dialog Box

2. Set your Layout options. Options are family dependent. See “Layout
Options” on page 53 for a complete description of these options.
52

Layout Options
3. Set your Advanced Layout options (Optional). Click the Advanced
button in the Layout dialog box. This displays the Advanced Layout
Options dialog box,as shown in Figure 2-27.

Figure 2-27. Advanced Layout Options (SX, SX-A, and eX)

Use the Advanced Layout Options dialog box to select extended run,
specify an effort level, and set a timing weight.See “Layout Options” on
page 53 for a complete description of these options.

4. Click OK. Layout runs. Status messages appear in the Log window.

Layout Options
The options available in the Layout and Advanced Layout dialog boxes are
family dependent. Below is a description of the various options.

Layout Mode
Standard

Standard layout maximizes the average performance for all paths. Standard
layout treats each part of a design equally for performance optimization.
Standard layout uses net weighting (or criticality) to influence the results.
53

Chapter 2: Using Designer
Standard layout does not consider delay constraints that have been set for a
design during place-and-route. However, a delay report based on delay
constraints entered in Timer can still be generated for the design. This is helpful
to determine if Timing-Driven Layout is required.

Timing-Driven

The primary goal of Timing-Driven layout is to meet delay constraints set in
Timer, SDC files (Axcelerator family only), DCF files (non-Axcelerator
families), and GCF files (ProASIC and ProASIC PLUS) For information on
GCF files, refer to “ProASIC Timing Constraints” on page 121.

Timing-Driven layout’s secondary goal is to produce high performance for the
rest of the design. Delay constraint driven design is more precise and typically
results in higher performance.

Note: Timing Driven Layout is available after you have entered timing
constraints.

Place Options
Run

The Run checkbox selects whether the placer runs during Layout. By default, it
reflects the current Layout state. If you have not run Layout before, Run is
checked by default. If your design has already been placed, this box is not
checked.

Incremental Placement Mode

• Off: No previous placement data is used.

• On: Previous placement data is used as the initial placement for the next place
run.

• Fix: Previous placement data is used and is fixed for the next place run.

In either Standard or Timing-Driven mode, the Incremental Mode option
allows you to preserve the timing of a design after a successful place-and-route,
even if you change part of the netlist. Incremental placement has no effect the
first time you run layout. During design iteration, incremental placement
attempts to preserve the placement information for any unchanged macros in a
modified netlist. As a result, the timing relationships for unchanged macros
54

Layout Options
approximate their initial values, decreasing the execution time to perform
Layout.

By forcing Designer to retain the placement information for a portion of the
design, some flexibility for optimal design layout may be lost. Therefore, do not
use incremental placement to place your design in pieces. You should only use it
if you have successfully run Layout and you have minor changes to your design.
Incremental placement requires prior completion of Layout. Do not use
incremental placement if the previous Layout failed to meet performance goals.

The FIX setting treats all unchanged macros as fixed placements. This is the
strongest level of control, but it may be too restrictive for the new placement to
successfully complete. The default ON setting treats unchanged macro
locations as placement hints, but alters their locations as needed to successfully
complete placement. Refer to the ChipEdit User’s Guide for details on fixing
macros.

For ProASIC and ProASIC PLUS designs, Designer always produces a
placement constraints file in the design directory called

<design>.dtf/Last_placement.gcf.

This file contains all the information about the latest placement. Blocks with
fixed placement constraints generate fixed placement constraints, while the
others generate initial placement constraints. The existing constraint files can
be edited to remove any prior placement constraints. The GCF command

read ”last_placment.gcf”;

can be added to an existing constraint file to indicate that the latest placement is
to be used as the initial placement.

Move or copy “last_placment.gcf ” to use it as an input constraint file. Other
wise, it is overwritten by any subsequent placement if it is left in its original
location.

Note: For information on .gcf files, refer to “ProASIC Timing Constraints” on
page 121.

Effort Level (Axcelerator Family)

Use the Effort Level slider to increase or decrease the amount of time you want
Layout to run. A higher effort level runs Layout for a longer period of time and
generally improves the quality of results. The default level is 3.
55

Chapter 2: Using Designer
Route Options
Run

Selecting the Run checkbox runs the router during Layout. By default, it reflects
the current Layout state. If you have not run Layout before, Run is checked.
Run is also checked if your previous Layout run completed with routing
failures. If your design has been routed successfully, this box is checked.

Incremental Mode

• Off: No previous routing data is used.

• On: Previous routing data is used as the starting point for the next router run.

Incremental routing allows you to fully route a design when some nets failed to
route during a previous run. You can also use it when the incoming netlist has
undergone an E.C.O. (Engineering Change Order).

Incremental routing should only be used if a low number of nets fail to route
(less than 50 open nets or shorted segments).

A high number of failures usually indicates a less than optimal placement (if
using manual placement through macros for example) or a design that is highly
connected and does not fit in the device. If a high number of nets fail, relax
constraints, remove tight placement constraints, or select a bigger device and
rerun routing.

Advanced
Layout Options

Extended Run

Extended run attempts to improve layout quality by using a greater number of
iterations during optimization. An extended run layout can take up to 5 times as
long as a normal layout. For scripting information, refer to “Extended Layout”
on page 118.

Note: This advanced option is available for all Antifuse Families.
56

Layout Failures
Effort Level (SX, SX-A, and eX Families)

This variable specifies the duration of the timing-driven phase of optimization
during layout. Its value specifies the duration of this phase as a percentage of
the default duration.

The default value is 100 and the selectable range is within 25 - 500. Reducing
the effort level also reduces the run time of Timing Driven place-and-route
(TDPR). With an effort level of 25, TDPR is almost four times faster. With
fewer iterations, however, performance may suffer. Routability may or may not
be affected. With an effort level of 200, TDPR is almost two times slower. This
variable does not have much effect on timing.

Note: This advanced option is only available for the SX, SX-A, and eX families.

Timing Weight

Setting this option to values within a recommended range of 10-150 changes
the weight of the timing objective function, thus biasing TDPR in favor of
either routability or performance.

The timing weight value specifies this weight as a percentage of the default
weight (i.e. a value of 100 has no effect). If you use a value less than 100, more
emphasis is placed on routability and less on performance. Such a setting would
be appropriate for a design that fails to route with TDPR. In case more
emphasis on performance is desired, set this variable to a value higher than 100.
In this case, routing failure is more likely. A very high timing value weight could
also distort the optimization process and degrade performance. A value greater
than 150 is not recommended.

Note: This advanced option is only available for the SX, SX-A, and eX families

Layout Failures
If Layout fails at any stage, Designer provides information that can help you
determine and correct the problem. This section describes some failures and
methods to fix the failures.

Failures During Timing Driven Layout

Layout can fail during initialization if the assigned constraints are impossible
(i.e. no routing path on the device can meet the assigned constraint). You must
57

Chapter 2: Using Designer
change the circuit or relax the constraints to proceed with Timing-Driven
Layout.

• Change the Speed Grade to increase minimum delay.

• Modify the design to reduce the number of logic levels in these paths.

• Relax over-restrictive delay constraints. If the constraints from Timer or a
DCF file are unnecessarily tight, change them to more realistic values that still
satisfy your timing requirements.

• Fixed pin placements may not allow Layout to succeed. Unplace or unfix
I/O pins.

Back-Annotation
The backannotation functions are used to extract timing delays from your post
layout data. These extracted delays are put into a file to be used by your CAE
package’s timing simulator. If you wish to perform pre-layout back-annotation,
select Export and Timing Files from the File menu.
58

Back-Annotation
To back-annotate your design:

1. From the Tools menu, click Back-Annotate, or click the Back-
Annotate button in the Design Flow window. This displays the
Back-Annotate dialog box, as shown in Figure 2-28.

Figure 2-28. BackAnnotate Dialog Box

2. Extracted Files Directory. The file directory is your default working
directory. If you wish to save the file elsewhere, click Browse and specify a
different directory.

3. Extracted File Names. This name is used as the base-name of all files
written out for back-annotation. Do not use directory names or file
extensions in this field. The file extensions is assigned based on your
selection of which file formats to export. The default value of this field is
<design>_ba.

4. Select Output format. Select an output format the Output Format
drop-down menu.
59

Chapter 2: Using Designer
5. Select a Simulator Language. Select either Verilog or VHDL93.
Simulator Language becomes available when you select SDF as an output
format.

6. Export Additional Files. Check Netlist or Pin to export these files at
the same time.

7. Click OK. The Back-Annotation program creates the files necessary for
back-annotation to the CAE file output type that you chose. Refer to Actel
Interface Guides or the documentation included with your simulation tool
for information about selecting the correct CAE output format and using
the back-annotation files.

Generating Programming Files
Once you have completed your design, and you are satisfied with the
back-annotated timing simulation, create your programming file. Depending
upon your device family, you need to generate a Fuse, Bitstream or STAPL
programming file.

Table 2-4. Programming Files

Programmer Antifuse
Programming File

Flash
Programming File

Flash Pro N/A STAPL

Silicon
Sculptor I

Fuse (Non-Axcelerator
families)

Dos and Windows: Bit-
stream

Silicon
Sculptor II Fuse (All families)

Dos Version: Bitstream
Windows Version:
Bitstream or STAPL
60

Generating Programming Files
Fuse Fuse allows you to generate a programming file for your design to program an
Actel device.

Silicon Signature (Antifuse Devices only)

You can specify a unique silicon signature to program into the device when you
generate a programming file. This signature is stored in the design database, the
programming file, and programmed into the device permanently during
programming. With Designer tools, you can use the silicon signature to identify
and track Actel designs and devices.

To generate a programming file:

1. In the Tools menu, click Fuse or click the Fuse button in the
Design Flow window. This displays the Generate Fuse file dialog box
(Figure 2-29).

Figure 2-29. Generate Fuse File Dialog Box

2. Specify File Type. Select the appropriate file type in the File Type
pull-down menu. Select “AFM-APS2” if you are using a Silicon Sculptor
programmer.

3. Enter Silicon Signature (Optional). Enter a 5 digit hexadecimal
value in the Silicon Signature box to identify the design. Valid characters are
“0” through “9,” and “a” through “f.”
61

Chapter 2: Using Designer
4. Specify File name and directory in the Output filename box.
Designer automatically names the file based on the <design_name>.adb
file. You can change the name by entering it in the File Name box. Click
Browse to change the directory.

Note: Do not add a file extension or suffix to the file name. The Designer
software automatically adds the extension to the programming file
name when you specify the programming format.

5. Generate Probe File Also. This option automatically generates a .prb
file for use with Silicon Explorer

6. Disable clamping diode for unused I/O pins. (SX-A and eX
families). Check box to disable clamping diode.

7. Save the file. Click OK when finished to save the file.

Bitstream and
STAPL Files

Bitstream allows you to generate a bitstream or STAPL file for ProASIC and
ProASIC PLUS devices. Actel’s ProASIC and ProASICPLUS devices contain
FlashLock circuitry to lock the device by disabling the programming and
readback capabilities after programming. Care has been taken to make the
locking circuitry very difficult to defeat through electronic or direct physical
attack.

FlashLock has three options:

No Lock

Creates a programming file which does not secure your device.

Permanent Lock

The permanent lock makes your device one time programmable. It cannot be
unlocked by you or anyone else.

Keyed Lock

Within each ProASIC and ProASICPLUS device, there is a multi-bit security key
user key. The number of bits depends on the size of the device. Table 2-5 and
Table 2-6 show the key size of different ProASIC and ProASICPLUS devices,
62

Generating Programming Files
respectively. Once secured, read permission and write permission can only be
enabled by providing the correct user key to first unlock the device.

The maximum security key for the device is shown in the dialog box.

Table 2-5. Key Size of ProASIC Devices

Device Key Size (bits) Key Size (Hex)

A500K050 51 Bits 13
A500K130 51 Bits 13
A500K180 51 Bits 13
A500K270 51 Bits 13

Table 2-6. Key Size of ProASICPLUS Devices

Device Key Size (Bits) Key Size (Hex)
APA075 79 Bits 20
APA150 79 Bits 20
APA300 79 Bits 20
APA450 119 Bits 30
APA600 167 Bits 42
APA750 191 Bits 48

APA1000 263 Bits 66
63

Chapter 2: Using Designer
To generate a bitstream or STAPL file:

1. In the Tools menu, click Bitstream or click the Bitstream
button in the Design Flow window. This displays the Bitstream
dialog box (as shown in Figure 2-30).

Figure 2-30. Bitstream Generation Dialog Box

2. Select Bitstream or STAPL from the File Type drop-down list
box.

3. FlashLock. Select one of the following options:

• No Locking: Creates a programming file which does not secure your
device.

• Use Keyed Lock: Creates a programming file which secures your device
with a FlashLock key (see “Keyed Lock” on page 62).

• Use Permanent Lock: Creates a one-time programmable device.

4. Click OK. Designer validates the security key and alerts you to any
concerns.

Note: The bitstream file header contains the security key.
64

Changing Design Name and Family
Programming the Security Bit

Two device programmers, Silicon Sculptor and Flash Pro, are available for
ProASIC and ProASICPLUS devices. If the programming file contains the
security key, by default the Silicon Sculptor and Flash Pro programming
software automatically enables the "secure" option and programs the security
key. You can turn this off, should you decide not to program using the security
key.

Please refer to the application note “Implementation of Security in Actel's
ProASIC and ProASICPLUS Flash-Based FPGAs” for more details.

Changing Design Name and Family
Design name and family are set when you import a netlist and compile a new
design. However, you can change this information for existing designs. If you
change the family, Designer notifies you that you must re-import the netlist and
automatically prompts you when you select the next Designer function. Use the
following procedure to change the name of a design and the targeted Actel
family for the design.

To change the design name or family:

1. In the Tools menu, click Setup Design. This displays the Setup
Design dialog box, as shown in Figure 2-31..

Figure 2-31. Setup Design Dialog Box

2. Specify the design name and family. Click OK. Refer to the Actel
FPGA Data Book for Actel Family specifications.
65

Chapter 2: Using Designer
Changing Design Information
Device and package information, device variations, and operating conditions
are set when you import a netlist and compile a new design. However, you can
change this information for existing designs.

To change design information for existing designs:

1. In the Tools menu, click Device Selection. The Device Selection
Wizard appears.

2. Select Die, Package, and Speed Grade. (You must select die and
package to continue.) Click Next.

3. Select Device Variations. Click Next.

4. Select Operating Conditions. Click Finish.

Refer to the Actel FPGA Data Book or call your local Actel Sales Representative
for information about device, package, speed grade, variations, and operating
conditions.

Changing Device, Package, and Speed Grade

Use the Device Selection dialog box (see Figure 2-17 on page 39) to specify or
change the device and package type and the speed grade based on your design
needs..

If you select a device, available packages are then displayed in the Package list
box. If you select a package, specify a speed grade in the Speed Grade pull-
down menu.

Devices that are no longer available from the Device Selection dialog box can
be selected using Designer Script. Because these parts may no longer be
available, do not use these devices unless approved by Actel.

Compatible Die Change

When you change the device, some design information can be preserved
depending on the type of change.
66

Exporting Files
Changing Die Revisions

If you change the die from one technology to another, all information except
timing is preserved. An example is changing an A1020A (1.2um) to an A1020B
(1.0um) while keeping the package the same.

Device Change Only

Constraint and pin information is preserved, when possible. An example is
changing an A1240A in a PL84 package to an A1280A in a PL84 package.

Repackager Function (Non-Axcelerator families only)

When the package is changed (for the same device), the Repackager
automatically attempts to preserve the existing pin and Layout information by
mapping external pin names based on the physical bonding diagrams. This
always works when changing from a smaller package to a larger package (or one
of the same size). When changing to a smaller package, the Repackager
determines if any of the currently assigned I/Os are mapped differently on the
smaller package. If any of the I/Os are mapped differently, then the layout is
invalidated and the unassigned pins identified.

Exporting Files
Designer lets you export auxiliary files (.afl, .bsd, .cob, .crt, .dcf, .gcf, .loc, .pdc,
.pin, .prb, .saif, seg, .vdc), fuse files (.afm, .dio, .fus), bitstream files (.bit), log
files (.log), netlist files (.adl, .edn, structural VHDL, STAPL files (.stp), and
structural Verilog), script files (.tcl), stamp files (*.mod and *data), and delay
files (.stf and .sdf) from your design.

Note: Designer does not support VHDL 87 in export.
Exported file types are family dependent.

To export a file:

1. In the File menu, click an export option from the Export sub-
menu. Select Netlist, Auxiliary, Fuse, Bitstream, Timing,
Script, or Log files. This displays a dialog box specific to the file type.

2. Specify file name and file type.

3. Click OK.
67

Chapter 2: Using Designer
Exporting
Bitstream Files

For important information on Bitstream and STAPL files, read “Bitstream and
STAPL Files” on page 62.

To export a bitstream file:

1. In the File menu, click the Bitstream export option from the
Export sub-menu.

2. Specify file name and file type. Designer supports two file types,
bitstream (*.bit) for Silicon Sculptor, and STAPL (*.stp) files for
programming systems that support the STAPL standard.

3. Click OK. This displays the Bitstream Export Options dialog box, as
shown in Figure 2-32.

Figure 2-32. Bitstream Export Options Dialog Box

4. Read and follow the instructions in “Bitstream and STAPL Files”
on page 62.
68

Exporting Files
Exporting PDC
Files

To export a Physical Design Constraint (PDC) file:

1. From the File Menu, select Export, and click
Auxiliary Files. . . from the Export sub-menu. The Export
Auxiliary Files dialog box appears, as shown in Figure 2-33

Figure 2-33. Exporting Your PDC File

• Save in: Navigate to the drive and folder where you want to save the file.

• File Name: Type your file name.

• Save As Type: Select PDC.

2. Click Save.

Exporting
STAMP files

Designer supports Stamp model generation for the eX, Axcelerator, SX-A, and
RTSX-S families. Stamp is an industry-standard file format that contains timing
data. Stamp models are read by board timing verification tools, such as Mentor
Graphics’s TAU and Viewlogic’s BLAST.

The Stamp model for a design consists of two files:

• The *.mod file describes the Interface (IOs) and all timing arcs of the model.

• The *.data file gives a timing value for each timing arc defined in the model.

Designer supports the following subset of Stamp modeling language for best,
typical, and worst operating conditions:
69

Chapter 2: Using Designer
• Inputs to Outputs propagation delay arcs, for shortest and longest paths.

• Inputs setup and hold timing-check arcs.

• Clock period timing-check arcs.

To export a STAMP file:

1. In the File Menu, click the Timing export option from the
Export sub-menu. This displays the Export Timing Files dialog box, as
shown in Figure 2-34.

Figure 2-34. Export Timing Files Dialog Box

2. Select STAMP from the Save As Type list box.

3. Enter a file name in the File Name text box, followed by .mod,
and click Save. The Preferences dialog box appears, as shown in Figure
2-35.
70

Exporting Files
Note: The corresponding *.data file is generated with the same name.

Figure 2-35. Timing Preferences Dialog Box

4. Set your preferences and click OK. Timer exports the file to the area
specified in the Export Timing Files dialog box. For information on setting
preferences, please refer to the Timer User’s Guide.

Note: Inputs to Outputs /Shortest/Longest delays cannot be generated in
the same data file. You must output two separate Stamp files.

Longest Paths / Shortest Paths selection in the Preferences dialog
box only affects Inputs to Outputs propagation delays and does not
affect Period, Setup, and Hold timing-check delays.

Operating conditions potentially affect all timing values of the
Stamp data file. It is necessary to export 3 separate Stamp files if
best/typical/worst models are needed.
71

Chapter 2: Using Designer
Generating Reports
Designer’s reports provide you with frequently used information in a
convenient format.

To generate a report:

1. In the Tools menu, click Reports. The Report Types dialog box
appears.

Figure 2-36. Report Type Dialog Box

2. Select a report type from the drop-down menu and click OK.

Status Report The status report enables you to create a report containing device and design
information, such as die, package, percentage of the logic and I/O modules
used, etc.

To generate a status report:

1. In the Tools menu, click Reports.

2. Choose Status from the drop-down list in the Report Type
dialog box. The status report opens in a separate window.You can save
or print the report.

Timing Report The timing report enables you to quickly determine if any timing problems
exist in your design. The timing report lists the following information about
your design:

• maximum delay from input I/O to output I/O

• maximum delay from input I/O to internal registers
72

Generating Reports
• maximum delay from internal registers to output I/O

• maximum delays for each clock network

• maximum delays for interactions between clock networks

To generate a timing report:

1. In the Tools menu, click Reports.

2. Choose Timing from the Report Type drop-down list. This
displays the Timing Report dialog box.

Figure 2-37. Timing Report Dialog Box

3. Specify the Slack Threshold. If you select “Slack” as the sort method,
you can limit the number of delays displayed based upon a slack threshold.
For example, if you only want to see delays that have a slack less than 5ns,
enter 5 in the Slack Threshold box.

4. Setup-hold Timing Check. Selection of this box enables you to
configure the timing report to calculate external setup and hold information
for device inputs in addition to the standard information.

5. Expand Failed Paths. If a path does not meet your timing
specifications, and you would like to see the incremental delay of each
macro within that path, select the Expand Failed Paths box.
73

Chapter 2: Using Designer
6. Options. Clicking Options brings up the Timing Preferences dialog box,
where you can set additional display and report options.

Figure 2-38. Timing Preferences Dialog Box

Sort by Actual Delay

The actual delay is the path delay between two points in your design. This
is the only way to sort your data if you do not have any timing constraints
entered (for information on setting timing constraints, see the Timer
User’s Guide). If you have entered timing constraints, the actual delay
report automatically displays the slack - even if you don’t ask for it - but
the data is always listed from longest to shortest actual delay.

Actual delay measurements may be calculated before or after layout (that
is, pre-layout or post-layout).

Sort by Slack Delay

Slack delay is the delay difference between a timing constraint entered in
Timer and the actual delay of a path. For example, if a signal takes 20 ns
to get from point A to point B, and you entered a timing constraint of 15
ns, the Timing Report would list -5 ns slack for that path. Thus, if the
slack negative, then the actual delay did not meet the desired timing by
the absolute value of the slack (in ns). Conversely, if the slack value is
positive, then the timing constraint was met, with the slack value (in ns)
74

Generating Reports
to spare. In a slack report, the data is sorted (by default) from longest to
shortest slack.

When displaying slack, all the paths without timing constraints are filtered
from the reported data. This allows you to quickly determine how well
your design meets your timing requirements. This is especially useful for
viewing critical delays like register-to-register, clock-to-out, and input-to-
register.

Path Selection

Normally, only the longest path between any of the starting points
(terminals) and each ending terminal is displayed. If you would like to see
the timing of all paths between any of the starting terminals and any of
the ending terminals, select Paths Between Any Pair in the Path Selection
box.

Break Path at Register

The default timing paths break at all clock, gate, clear, and preset pins. If
you would like to generate a timing report that passes through these pins,
unselect the appropriate pins in the Break Path at Register options.
75

Chapter 2: Using Designer
7. Click OK. This displays a timing report based upon your timing and
display preferences, as shown in Figure 2-39. The format and content of the
report is determined by the family.

Figure 2-39. Timing Report (Axcelerator, SX-A, eX, ProASIC, and ProASIC Plus
families)

Timing
Violations

To generate a timing violations report:

1. From the Tools menu, click Reports.

2. In the Reports dialog box, select Timing Violations and click
OK.

3. The Timing Violations report appears in a separate window.
76

Generating Reports
Pin Report The pin report allows you to create a text list of the I/O signal locations on a
device. You can generate a pin report sorted by I/O signal names or by package
number.

To generate a pin report:

1. In the Tools menu, click Reports.

2. Choose Pin from the drop-down list in the Report Type dialog
box. This displays the Pin Report dialog box.

Figure 2-40. Pin Report Dialog Box
77

Chapter 2: Using Designer
3. Specify the type of report to generate. Select Number or Name
from the List By pull-down menu, then click OK. This displays a
pin report, as shown in Figure 2-41.

Figure 2-41. Pin Report

Flip-Flop Report The flip-flop report enables you to create a report that lists the number and
type of flip-flops (sequential or CC, which are flip-flops made of 2
combinatorial macros) used in a design. There are two types of reports you can
generate, Summary or Extended.

A Summary report displays whether the flip-flop is a sequential, I/O
sequential, or CC flip-flop, the macro implementation of the flip-flop, and the
number of times the implementation of the flip-flop is used in the design. An
Extended report individually lists the names of the macros in the design.

To generate a flip-flop report:

1. In the Tools menu, click Reports. This displays the Reports dialog
box.
78

Generating Reports
2. Select Flip-Flop from the drop-down menu. The Flip-Flop Report
dialog box appears, as shown in Figure 2-42.

Figure 2-42. Flip-Flop Report Dialog Box

3. Specify the type of report to generate. Select Summary or
Extended from the Type pull-down menu, then click OK. This displays the
report in a separate window, as shown in Figure 2-43.

Figure 2-43. Flip-Flop Extended Report
79

Chapter 2: Using Designer
Figure 2-44. Flip-Flop Summary Report

Power Report The power report enables you to quickly determine if any power consumption
problems exist in your design. The power report lists the following
information:

• Global device information and SmartPower Preferences selection
information

• Design level static power summary

• Dynamic power summary

• Hierarchical detailed power report (including gates, blocks, and nets), with a
block by block, gate by gate, and net by net power summary SmartPower
results
80

Generating Reports
To create a power report:

1. In the Tools menu, click Reports. This displays the Reports dialog
box.

2. Choose Power in the Report list and click OK. The Power
Report dialog appears, as shown in Figure 2-45.

Figure 2-45. Power Report Dialog Box

You have the following options:

• Static Power: Returns static power information

• Dynamic Power: Returns dynamic power information

• Report Style: Specifies report style
81

Chapter 2: Using Designer
3. For additional Power Report Options, click the Options to
open the Power Preferences dialog box, as shown in Figure
2-46.

Figure 2-46. Power Preferences Dialog Box

Select analysis preferences:

• Units: Sets units preferences for power and frequency

• Operating Conditions: Sets preferences for operating conditions

• Block Expansion Control: Filters reported power values returned in the
report. This box does not control which values are included, rather it
specifies which blocks are detailed/expanded. You may specify which
blocks are expanded using a minimum power value, a minimum power
ratio (with regards to the total power of the design) and a maximum
hierarchical depth; a filtered value is not include in displayed lists, but still
counted for upper hierarchical levels.

4. Once you are satisfied with your selections, click OK in the
Preferences dialog box and then click OK in the Power
Report dialog box. SmartPower displays the report in a
separate window.
82

Setting Designer Preferences
Setting Designer Preferences

Setting the
Start-up
Directory

You can set the start-up directory for Designer. Whenever you execute a
command or function such as Open or Save, Designer uses the directory you
specify as the start-up directory.

To specify directory preferences:

1. From the File menu, click Preferences. The Program Preferences
dialog box appears, as shown in Figure 2-47.

Figure 2-47. Directory Preferences Dialog Box

2. Start-up in directory: Click Browse to change your default working
directory.

3. Change your working directory. Enable or disable the ability to
automatically change directories during the opening of a design, the saving
of a design, or the opening of a script.

4. To enable a design name folder to be automatically created in
the working directory whenever you create a new design,
check Add Design Name to Working Directory on New.

5. Click OK.
83

Chapter 2: Using Designer
Internet
Features

Use the internet tab in the Preferences dialog box to set your automatic version
checking preferences (Figure 2-48). You can enable Designer to automatically
check if there is a new version at start-up, prompt you before checking, or
disable version checking entirely.

Figure 2-48. Internet Tab (in Preferences Dialog Box)

Setting Your
Proxy

An FTP connection is used to update some data files. Use the Proxy tab in the
Preferences dialog box to enter your proxy name if you use a proxy server.
From the File menu, click Preferences and then the Proxy tab.

File Association
(PC only)

Several programs, including Designer, create files with the .adb extension. Use
the File Association dialog box to specify Designer as the default program for
files with the .adb extension. Doing so starts Designer whenever a file with the
.adb extension is double clicked.

To associated .adb files with the Designer application:

1. From the File menu, click Preferences. The Preferences
dialog box appears.
84

Setting Designer Preferences
2. Click File Association, as shown in Figure 2-49.

Figure 2-49. File Association Tab

3. Check the box to associate .adb files with the Designer
application. Un-check the box if you do not want Designer to
start when clicking a file with the .adb extension.

4. Click OK.

PDF Reader
(Unix Only)

Use the PDF Reader tab to bring up Designer’s online manuals. Enter the
default reader’s name with the full path or click browse.

Web Browser
(Unix Only)

The Web Browser tab is used to change the default web browser. Enter the new
browser’s name with the full path, or click Browse. Designer uses the web
browser to bring up the HTML display of data in the software-versioning
feature (when such data needs to be displayed) as well as supporting the Actel-
on-the-Web feature.
85

Chapter 2: Using Designer
Starting other Applications from Designer
You can start any application from Designer that you have added to the Tools
menu.

Note: This is supported on the PC only.

To add an application to the Tools menu:

1. From the Tools menu, click Customize. The customize dialog box
is displayed as shown in Figure 2-50.

Figure 2-50. Customize Dialog Box

2. Enter the application name in the Menu Text area. This text
appears in the Tools command menu.

3. Enter the command to execute, or click the Browse button to
select an executable filename. If the location of the command to
execute is not in your path, you must include the absolute path when
specifying the command.

4. In the Arguments text box, enter the command-line
arguments that will be passed to the command when
executing.

5. In the Initial Directory field, type the absolute path of the
directory in which the application will initially be executed.
86

Saving a Design
6. Click Add.

7. When you are finished adding tools, click OK. The application
name you added appears in the Tools menu.

To remove an application from the Tools menu:

1. From the Tools menu, click Customize.

2. Select the application to remove and click Remove.

3. When you are finished removing applications, click OK.

To order applications in the Tools menu:

1. From the Tools menu, click Customize.

2. Reorder the tools by selecting one at a time and clicking the
Move Up or Move Down buttons.

3. Click OK when you are finished. The tools appear in the Tools menu
in the same order as they do in the Menu Contents list box.

Saving a Design
Once you have imported a netlist and compiled a design, you can save the
design as an ADB file.

To save your design as an ADB file:

1. In the File menu, click Save or click the save icon in the
toolbar.

2. Enter the File name and click Save. The default file name is the
name you previously entered in the setup dialog box. The default format is
adb. Make sure your save in the “.adb” format.

Once you have saved your compiled design as an ADB file, during any
future Designer sessions, you can open the ADB file, skipping the compile
step, and perform optimization on the design, including updating netlist
and auxiliary file information.
87

Chapter 2: Using Designer
License Details

To display information about your license:

1. Open your project or start a new one.

2. From the help menu, click License Details. The license details
dialog box is displayed, as shown in Figure 2-51

Figure 2-51. License Details Dialog Box

This information cannot be edited, it is for display purposes only.

Ending the Designer Session
To end a Designer session, choose the Exit command from the File menu. If
the information has not been saved to disk, you are asked if your want to save
the design before exiting. If you choose YES, the “<design_name>.adb” file is
updated with information entered the current session. If you choose NO, the
information is not saved and the “<design_name>.adb” file remains
unchanged.
88

3
Scripting

The Designer software allows designers to run scripts in Tcl (Tool Command
Language) for simple or complex tasks. You can run scripts from the Windows
or UNIX command line or store and run a series of commands in a “.tcl” batch
file.

This chapter contains information on using Tcl inside Designer. This chapter
also contains a list of all the extension commands we have added to Tcl.

Tcl Overview
Tcl is a fairly simple programming language. If you have programmed before,
you can learn enough to write interesting Tcl programs within a few hours. This
chapter provides a quick overview of the main features of Tcl. After reading
this overview, you’ll probably be able to start writing simple Tcl scripts on your
own; however, we recommend you consult one of the many available Tcl books
for more complete information. You can also find Tcl information on the Web
at various locations, such as http://www.scriptics.com.

Basic Syntax Tcl scripts are made up of commands separated by new lines or semicolons.
Commands all have the same basic form, such as:

expr 20 + 10

This command computes the sum of 20 and 10 and returns the result, 30.

Each Tcl command consists of one or more words separated by spaces. In this
example there are four words: expr, 20, +, and 10. The first word is the name of
a command and the other words are arguments to that command. All Tcl
commands consist of words, but different commands treat their arguments
differently. The expr command treats all of its arguments together as an
arithmetic expression, computes the result of that expression, and returns the
result as a string. In the expr command the division into words isn't significant:
you could just as easily have invoked the same command as

expr 20+10

However, for most commands the word structure is important, with each word
used for a distinct purpose. All Tcl commands return results. If a command has
no meaningful result then it returns an empty string as its result.
89

Chapter 3: Scripting
Variables Tcl allows you to store values in variables and use the values later in commands.
The set command is used to write and read variables. For example, the following
command modifies the variable x to hold the value 32:

set x 32

The command returns the new value of the variable. You can read the value of
a variable by invoking set with only a single argument:

set x

You don't need to declare variables in Tcl: a variable is created automatically the
first time it is set. Tcl variables don't have types: any variable can hold any value.

To use the value of a variable in a command, use variable substitution as in the
following example:

expr $x*3

When a $ appears in a command, Tcl treats the letters and digits following it as
a variable name, and substitutes the value of the variable in place of the name.
In this example, the actual argument received by the expr command is 32*3
(assuming that variable x was set as in the previous example). You can use
variable substitution in any word of any command, or even multiple times
within a word:

set cmd expr

set x 11
90

Tcl Overview
$cmd $x*$x

Command
Substitution

You can also use the result of one command in an argument to another
command. This is called command substitution:

set a 44

set b [expr $a*4]

When a [appears in a command, Tcl treats everything between it and the
matching] as a nested Tcl command. Tcl evaluates the nested command and
substitutes its result into the enclosing command in place of the bracketed text.
In the example above the second argument of the second set command is 176.

Quotes and
Braces

Double-quotes allow you to specify words that contain spaces. For example,
consider the following script:

set x 24

set y 18

set z "$x + $y is [expr $x + $y]"

After these three commands are evaluated variable z has the value 24 + 18 is 42.
Everything between the quotes is passed to the set command as a single word.
Note that (a) command and variable substitutions are performed on the text
between the quotes, and (b) the quotes themselves are not passed to the
command. If the quotes were not present, the set command would have
received 6 arguments, which would have caused an error.

Curly braces provide another way of grouping information into words. They
are different from quotes in that no substitutions are performed on the text
between the curly braces:

set z {$x + $y is [expr $x + $y]}

This command sets variable z to the value "$x + $y is [expr $x + $y]".
91

Chapter 3: Scripting
Filenames

In Tcl-syntax, filenames must be enclosed in braces { } to avoid backslash-
substitution, which is an issue with Windows-based filenames. The problem is
that sequences of “\n” or “\t” are interpreted specially. Using the braces
disables this special interpretation and specifies that the Tcl interpreter treat the
enclosed string literally. Alternatively, double-backslash “\\n” and “\\t” would
work as well as forward-slash directory-separators “/n” and “/t”.

For example, to specify a file on your Windows PC at c:\newfiles\thisfile.adb,
use one of the following:

{C:\newfiles\thisfile.adb}
C:\\newfiles\\thisfile.adb
"C:\\newfiles\\thisfile.adb"
C:/newfiles/thisfile.adb
"C:/newfiles/thisfile.adb"

If there is white space in the filename-path, you should use the braces or
double-quotes. For example C:\program data\thisfile.adb should be referenced
in Tcl script as {C:\program data\thisfile.adb} or “C:\\program
data\\thisfile.adb”.

Lastly, if you are attempting to use variables, you cannot use the braces { } since
they by default turn off all special interpretation...including the dollar-sign.
Instead do use either double-backslashes or forward slashes with double-
quotes--something perhaps like this: “$design_name.adb”.

Control
Structures

Tcl provides a complete set of control structures including commands for
conditional execution, looping, and procedures. Tcl control structures are just
commands that take Tcl scripts as arguments. The example below creates a Tcl
procedure called power, which raises a base to an integer power:

proc power {base p} {
 set result 1
 while {$p > 0} {
 set result [expr $result * $base]
 set p [expr $p - 1]
 }
return $result
}

92

Tcl Overview
This script consists of a single command, proc. The proc command takes three
arguments: the name of a procedure, a list of argument names, and the body of
the procedure, which is a Tcl script. Note that everything between the curly
brace at the end of the first line and the curly brace on the last line is passed
verbatim to proc as a single argument. The proc command creates a new Tcl
command named power that takes two arguments. You can then invoke power
with commands such as:

power 2 6

power 1.15 5

When power is invoked, Tcl script evaluates the procedure body. While the body
is executing it can access its arguments as variables: base holds the first argument
and p holds the second.

The body of the power procedure contains three Tcl commands: set, while, and
return. The while command does most of the work of the procedure. It takes two
arguments, an expression ($p > 0) and a body, which is another Tcl script. The
while command evaluates its expression argument using rules similar to those of
the C programming language and if the result is true (nonzero) then it evaluates
the body as a Tcl script. It repeats this process over and over until eventually
the expression evaluates to false (zero). In this case the body of the while
command multiplied the result value by base and then decrements p. When p
reaches zero the result contains the desired power of base. The return command
causes the procedure to exit with the value of variable result as the procedure's
result.

Command
Origins

As you have seen, all of the interesting features in Tcl are represented by
commands. Statements are commands, expressions are evaluated by executing
commands, control structures are commands, and procedures are commands.

Tcl commands are created in three ways. One group of commands is provided
by the Tcl interpreter itself. These commands are called built-in commands.
They include all of the commands you have seen so far and many more (see
below). The built-in commands are present in all Tcl applications.

The second group of commands is created using the Tcl extension mechanism.
Tcl provides APIs that allow you to create a new command by writing a
command procedure in C or C++ that implements the command. You then
93

Chapter 3: Scripting
register the command procedure with the Tcl interpreter by telling Tcl the name
of the command that the procedure implements. In the future, whenever that
particular name is used for a Tcl command, Tcl calls your command procedure
to execute the command. The built-in commands are also implemented using
this same extension mechanism; their command procedures are simply part of
the Tcl library.

When Tcl is used inside an application, the application incorporates its key
features into Tcl using the extension mechanism. Thus the set of available Tcl
commands varies from application to application. The third group of
commands consists of procedures created with the proc command, such as the
power command created above. Typically, extensions are used for lower-level
functions where C programming is convenient, and procedures are used for
higher-level functions where it is easier to write in Tcl.

Other Features Tcl contains many other commands besides the ones used in the preceding
examples. Here is a sampler of some of the features provided by the built-in Tcl
commands:

• More control structures, such as if, for, foreach, and switch.

• String manipulation, including a powerful regular expression matching
facility. Arbitrary-length strings can be passed around and manipulated just as
easily as numbers.

• I/O, including files on disk, network sockets, and devices such as serial ports.
Tcl provides particularly simple facilities for socket communication over the
Internet.

• File management: Tcl provides several commands for manipulating file
names, reading and writing file attributes, copying files, deleting files, creating
directories, and so on.

• Subprocess invocation: you can run other applications with the exec
command and communicate with them while they run.

• Lists: Tcl makes it easy to create collections of values (lists) and manipulate
them in a variety of ways.

• Arrays: you can create structured values consisting of name-value pairs with
arbitrary string values for the names and values.

• Time and date manipulation.
94

Tcl Extension Commands Added by Designer
• Events: Tcl allows scripts to wait for certain events to occur, such as an
elapsed time or the availability of input data on a network socket.

Tcl Extension Commands Added by Designer
In the descriptions below, optional arguments are enclosed in square brackets [
] for notational purposes only. Also notational-only, valid values are displayed
within enclosing parentheses (), separated by bars |.

backannotate

This is equivalent to executing the Back-Annotate command within the Tools
menu (see “Back-Annotation” on page 58).

Syntax:

backannotate

backannotate -name name -format type -language simlang [-dir
dir] [-netlist] [-pin]

close_design

This is equivalent to executing a Close command within the File menu.

Syntax:

close_design

compile

This is equivalent to executing a Compile command within the Tools menu (see
“Compiling a Design” on page 44).

Syntax:

compile [-nl_pins_overwrite]

export

This is equivalent to executing a command on the Export sub-menu within the
File menu (see “Exporting Files” on page 67).

Syntax:
95

Chapter 3: Scripting
export -format edif \
 -edif_flavor (generic | viewlogic | mgc | orcad | workview
) \
 {filename}

export -format (afm | dio | fus) [-signature value] {file-
name}

export -format log -diagnostic (filename}

export -format sdf [-prelayout] {filename}

export -format (adl | afl | cob | crt | dcf | design_script |
loc | pin | session_script | stf | tcl | verilog | vhdl | crt
| dcf) {filename}

get_defvar

Syntax:

get_defvar variable

import

Import Source Files and Import Auxillary Files are new Designer
enhancements. However, the previous Tcl scripts for import are still supported.

import -edif_flavor (generic | viewlogic | mgc | orcad | work-
view) \
 {filename}

import -format vhdl -top_entity entity_name [-vhdl87] {file-
name}

import -format adl -netlist_naming (generic | verilog | vhdl)
\
 {filename}

import -format (crt | dcf | verilog | vhdl) {filename}
96

Tcl Extension Commands Added by Designer
import_aux

This is the same as executing the Import Auxiliary Files command from the
File menu.

import_aux -format "crt" \

 {D:\testarea\designs\anita\test.crt}

import_source

This is equivalent to executing an Import Source File command within the File
menu (see “Importing Source Files” on page 27).

Syntax:

import_source -format "edif" -edif_flavor "GENERIC" \

 {D:\testarea\designs\anita\test.edn} -format "pin" \

 {D:\testarea\designs\anita\test1.pin}

layout

This is equivalent to executing a Layout command within the Tools menu
(see“Layout” on page 50).

Syntax:

layout [-timing_driven] [-incremental (on | off | fix)]

layout (advanced options for ONO families)

This is equivalent to executing commands within the Advanced Layout Options
dialog box.

Syntax:

layout [-timing_driven] [-incremental inc_mode] [-extended_run
ext_mode]
where inc_mode:.= “on” | “off” | “fix” , ext_mode:.=”on” |
”off”

layout (advanced options for the SX family)

This is equivalent to executing commands within the Advanced Layout Options
dialog box.
97

Chapter 3: Scripting
Syntax:

layout [-timing_driven] [-incremental inc_mode] [-extended_run
ext_mode] [-effort_level enumber] [-timing_weight tnumber]
where inc_mode = “on” | “off” | “fix” , ext_mode =”on” | ”off”
, enumber is 25 to 500, tnumber is 10-150

new_design

This is equivalent to executing a New command within the File menu (see
“Starting a New Design” on page 13).

Syntax:

new_design -name design_name -family family_name

open_design

This is equivalent to executing an Open command within the File menu (see
“Opening an Existing Design” on page 14).

Syntax:

open_design {filename}

report

This is equivalent to executing a Reports command within the Tools menu (see
“Generating Reports” on page 72).

Syntax:

report -type flipflop [-fmt (summary | extended)] {filename}

report -type pin [-listby (name | number)] {filename}

report -type status {filename}

report -type timing [-sortby (actual)] [-maxpaths number]
98

Tcl Extension Commands Added by Designer
[-breakclkpin] [-breakclrpin] {filename}

save_design

This is equivalent to executing a Save command within the File menu (see
“Saving a Design” on page 87).

Syntax:

save_design

save_design {filename}

set_defvar

Syntax:

set_defvar variable value

Note: Specifying “NULL” as the value unsets the variable.

set_design

This is equivalent to executing a Setup Design command within the Tools menu
(see “Changing Design Name and Family” on page 65).

Syntax:

set_design -name design_name -family family_name

set_device

This is equivalent to using the Device Selection Wizard.

Syntax:

set_device \
 -family family_name \
 -die die_name \
 -package package_name \
 -speed speed_grade \
 -voltage voltage \
 -voltrange voltrange \
 -temprange temprange \
 -pci (yes | no) \
 -jtag (yes | no) \
99

Chapter 3: Scripting
 -probe (yes | no) \
 -itol (3.3 | 5.0) \
 -io_trip (pci | ttl) \
 -trst (yes | no }

PDC Commands
reset_iobank
reset_iobank <bankname>

Resets the I/O bank’s technology. This may result in all or a few ports in the
bank to be unplaced.

reset_io command
reset_io <portname>

portname ::= <single port name> | <regexp>

<regexp> ::= *

All parameters are required. The port is assigned the default I/O technology of
the design. This default is read from the default system and can also be changed
using the Design Setup Wizard.

reset_net_criticality
reset_net_critical hier_net_name {hier_net_name}

hier_net_name ::= <AFL netname> | <net_regexp>

<net_regexp> ::= A limited CShell like regular expression using ?, *, [and]
characters,

Reset the criticality of the net to the default (5). The command must have at
least 1 net name parameter. The Net names are AFL names.

set_io
set_io <portname> -standard <io_std> -slew <high | low> -
strength <8 | 12 |16 |24> -delay < on | off > -register <on |
off> -pinname <pinname> -fixed <yes | no> -bank <bankname>
100

PDC Commands
io_std ::= lvttl | pci | pcix | lvcmos25 | lvcmos18 | lvcmos15 | hstl1 |
sstl31 | sstl32 | sstl21 | sstl22 | gtlp33 |gtlp25

on_off ::= on | off

portname ::= <single port name> | <regexp>

strength = output drive strength. Applicable for outputs only.

<regexp> ::= *

<pinname> ::= a valid package pin name (either a number or alphanumeric)

All parameters except the port name are optional. If a parameter is not
specified, the value will not be changed as long as it is consistent with other
settings. For example, setting the I/O standard to PCI forces the slew to High.
Port names are the original (i.e. no naming translations are done) names from
the imported netlist. If a port is not specified in the PDC file, its settings are
not changed.

Note: Assigning an I/O standard to a port may invalidate its location. In this
case, it is unplaced automatically.

set_iobank

This command specifies the I/O bank’s technology to the given standard. This
may result in many ports in the bank to be unplaced. I/O Bank name and the
All parameters are required.

set_iobank <bankname> -vcci <vcci_voltage> -vccr
<vccr_voltage> -inputdelay <delay_value> -lpinput <On|Off> -
lpoutput <On|Off>

bankname = bank<0 .. 7>

vcci _voltage = 3.3, 2.5, 1.8

vccr_voltage = 1.5, 2.5,…

-inputdelay <delay_value> = Enables the input delay. Delay value can be from
1-31.

-lpinput <On|Off> = Enables or disables the Low Power Mode for input
buffers)

-lpoutput <On|Off> = Enables or disables the LowPowerMode for output
buffers)
101

Chapter 3: Scripting
set_location
set_location <clustername> x y

clustername ::= <module instance name> in the netlist

x, y ::= module instance name coordinates

set_net_criticality
set_net_critical <criticality_number> hier_net_name
[hier_net_name]

criticality_number ::= 1..10

hier_net_name ::= <AFL netname> | <net_regexp>

<AFL netname>::=

<net_regexp> ::= A limited CShell like regular expression using ?, *, [and]
characters,

Net criticality is used to influence placement and routing in favor of
performance. The allowable range of net criticality is 1-10.

Set the criticality of the net to the given number. The command must have at
least 2 parameters. (in the above order) The net names are AFL names, meaning
they must be visible in Timer and ChipEdit (note: Default criticality is 5).

set_vref
set_vref {-bank <bankname>} <pinnum> }<pinnum>}

bankname is one of Bank0, Bank1 …. Bank7

<pinnum> is the alphanumeric pinname

Sets the given pins as Vref pins. The bank name is optional. It is an error to give
bank name and mention pins that do not belong to that bank. Pins that do not
belong to a bank that needs a Vref are ignored.

set_vref_defaults
set_vref_defaults -bank <bankname>

bankname is one of Bank0, Bank1 …. Bank7
102

PDC Commands
Sets the default vref pins for the given bank. This command is ignored if the
bank does not need a vref (because of the I/O technology it supports)

Error Handling After executing each of these commands, a valid TCL result is set so you can
check the status. The result is a string value and can be one of these values.

“OK”

“ERROR: Unknown port”

“ERROR: Unknown I/O Standard”

“ERROR: Read only I/O Standard”

“ERROR: Error in setting I/O Standard”

“ERROR: Unknown I/O Attribute”

“ERROR: I/O Attribute is not applicable”

“ERROR: Read only I/O Attribute”

“ERROR: Invalid Package pin”

“ERROR: Illegal or Invalid assignment to Package pin”

“ERROR: Not implemented yet”

“ERROR: Net criticality must be 1-10”

“Error: Unknown Net”

“Warning: Some ports have been unplaced because of this action”

Sample PDC
Script

set a [set_io reg_out<3> -iostd LVTTL]

if {$a != "OK"} {

 puts "ERROR: $a"

}

set b [set_iobank bank3 -iostd LVTTL]
103

Chapter 3: Scripting
if {$b != "OK"} {

 puts "set_iobank: $b"

}

SDC Commands
SDC is a Tcl based format constrianing file. The commands of an SDC file
follow the Tcl syntax rules. Designer accepts an SDC constraint file generated
by a third-party tool. This file is used to communicate design intent between
tools and provide clock and delay constraints. The Synopsis Design Compiler,
Prime Time, and Synplicity tools can generate SDC descriptions or the user can
generate the SDC file manually.

Design Object
Access
Commands

Most constraint commands require a command argument. Designer supports
the SDC access commands shown in Table 3-1.

get_clocks

This command returns the named clock with the argument.

Example:

create_clock -period 10 [get_clocks CK1]

get_ports

Returns the named ports with the argument

Example:

Table 3-1. Supported SDC Access Commands

Design Object Access Command

Clock get_clocks

Port get_ports
104

SDC Commands
set_max_delay -from [get_ports datal] -to

[get_ports out1]

Timing
Constraint
Commands

Designer supports the timing constraint commands in Table 3-2:

create_clock

The create_clock constraint is associated with a specific clock in a sequential
design and determines the maximum register-to-register delay in the design.

Supported arguments:

-period period_value

[-name clock_name]

[-waveform edge_list]

[port_pin_list]

The following is a description of command syntax for specifying a clock:

create_clock -period period_value [-name

clock_name] [-waveform edge_list]

[port_pin_list]

Note:

• period_value is mandatory and must be specified in ns. No clock is created
if the period is not supplied.

• clock_name is optional if port_pin_list is supplied.

Table 3-2. Supported SDC Timing Constraint Commands

Constraint Command

Clock Constraint create_clock

Path Constraint set_max_delay
105

Chapter 3: Scripting
• edge_list is optional. If supplied, it has to contain exactly 2 edges to be
taken into account. The duty cycle information is added to the clock
constraint.

• port_pin_list may contain either zero names or one name.
Valid Command Examples:

create_clock -period 5 - name CK1

create_clock -period 4 -name CK1 -waveform {0 2}

create_clock -period 11 -name CK1 -waveform {0 2 5 7} (valid, but
the waveform is ignored.)

create_clock -period 6 [get_ports CK1]

create_clock -period 2 -name CLOCK [get_ports ck1] (valid, but
the name of the clock will be ck1 and not CLOCK).

Invalid Command Examples

create_clock -period 10 (No name is supplied.)

create_clock -period 3 [get_ports {CK1 CK2}] (There is more than
one name in the port_pin_list.)

create_clock -period 7 -name ck [get_ports {clk1 clk2}]

set_max_delay

Supported Arguments:

[-from from_list]

[-to to_list]

delay_value

Note:

• from_list is mandatory.

• to_list is mandatory.

Valid Command Examples:

set_max_delay -from [get_ports data2] -to [get_ports {out1
out2}] 9

Invalid Command Examples
106

Tcl Commands for Timer
set_max_delay -from [get_ports {IN10 IN11}]5 (The to_list is not
supplied.)

Limitations Not all object and design constraint commands are supported in Designer.
There are limitations on SDC support. Refer to the latest Designer series
Release Notes for latest supported Object Access, Design Constraints, and
Supported Features.

Naming Conventions: No wild cards. The * and ? characters cannot be
used in the object names. The timing graphical interface, Timer, displays
internal Actel port names. While the internal Actel netist prevents special
characters from being used, in the case where the internal name is different
from the “user” netlist, there may be discrepancies in the GUI. These could
also be different from the names in the SDC files.

Multiple Files: All the constraints have to be imported from a single SDC
file. If a second file is imported, the previous constraints are discarded.

Object Access Commands: Only get_ports and get_clocks are supported.

Timing Constraints: Only create_clock and set_max_delay are supported.

Tcl Commands for Timer
timer_remove_all_constraints

This is equivalent to executing the Remove All Constraints command in the
Edit menu.

timer_commit

This is equivalent to executing the Commit command in the File menu. This is
needed after all Timer commands to save changes made in Timer.

timer_restore

This restores previous committed constraints.

timer_set_maxdelay

This is equivalent to adding a maximum delay constraint in the Path/Set grid.

Syntax:
107

Chapter 3: Scripting
timer_set_maxdelay -from “pin1” -to “pin2” -unit “ns|ps”
-delay delay

timer_get_maxdelay

This occurs at the initiation of Timer. All maximum delay constraints are
displayed in the set grid.

Syntax:

timer_get_maxdelay -from “pin1” -to “pin2”

timer_setenv_clock_freq

This is equivalent to setting a required clock frequency in the Clocks tab(in
Mhz).

Syntax:

timer_setenv_clock_freq -clock “name” -freq frequency

timer_setenv_clock_period

This is equivelant to setting required clock period in the Clocks tab (in ns).

Syntax:

timer_setenv_clock_period -clock “name” -unit “ns|ps” -period
period

timer_add_clock_exception

This is equivalent to adding a clock exception in the Clocks tab.

Syntax:

timer_add_clock_exception -clock “name” -pin “pin” -dir (from
| to)

timer_remove_clock_exception

This is equivalent to removing a clock exception in the Clocks tab.

Syntax:

timer_remove_clock_exception -clock “name” -pin “pin” -dir
108

Tcl Commands for Timer
(from | to)

timer_add_stop

This is equivalent to adding stop points on the Breaks tab.

Syntax:

timer_add_stop -pin “pin”

timer_add_pass

This is equivalent to adding a pass pin on the Breaks tab.

timer_add_pass -pin “pin”

timer_remove_stop

This is equivalent to removing a stop point on the Breaks tab.

Syntax:

timer_remove_stop -pin “pin”

timer_remove_pass

Syntax:

timer_remove_pass -pin “pin”

timer_get_path_constraints

This is equivalent to displaying all the paths that have a max delay in the set
grid.

timer_get_clock_constraints

This is equivalent to displaying the required clock frequency (clock constraint)
for the clock input.

Syntax:

timer_get_clock_constraints -clock “name”
109

Chapter 3: Scripting
timer_get_clock_actuals

This is equivalent to finding the actual clock frequency. Occurs when timer is
initiated.

Syntax:

timer_get_clock_actuals -clock “name”
110

Tcl Commands for PinEdit
timer_get_path

This is equivalent to clicking on a path in the Set grid to display paths in the
Paths grid.

Syntax:

timer_get_path -from “pin1” -to “pin2”
-exp (no | yes)
-sort (actual | slack)
-order (long | short)
-case (worst | typ | best)
-maxpath number
-maxexpath number
-mindelay delay
-maxdelay delay
-breakatclk (no | yes)
-breakatclr (yes | no)

Tcl Commands for PinEdit
pin_assign

This is equivalent to assigning a pin. This assigns the pin, but does not fix its
assignment.

Syntax:

pin_assign [-nofix] -port <portname> -pin <pin number>

pin_assign -port <port name> [-iostd <i/o standard>]
[-iothresh <i/othreshold>][-outload <output load>]
[-slew <High | Low>][-res_pull <None | High | Low>]

Arguments for a given port:

-iostd
Allows to set the I/O Standard

-iothresh
Allows to set the I/O Threshold

-outload
Allows to set the Output Load, also called Loading for some
111

families

-slew
Allows to set the Slew

-res_pull
Allows to set the Resistor Pull, also called Power Up State for
some families.

pin_commit

This is equivalent to committing all changes in PinEdit. This is needed after all
pin commands to save changes.

Syntax:

pin_commit

pin_fix

This is equivalent to fixing a pin assignment.

Syntax:

pin_fix -port <portname>

pin_fix_all

pin_unassign

This is equivalent to unassigning a pin.

Syntax:

pin_unassign -port <portname>

pin_unassign_all

Running Scripts from the Command Line
pin_unfix

This is equivalent to unfixing a pin assignment.

Syntax:

pin_unfix -port <portname>

pin_unfix_all

Running Scripts from the Command Line
To execute a Tcl script file in Designer from the command line, type the
following at the command line prompt:

<location of Actel software>/bin/designer script:<filename>

where:

<location of Actel software> is the root directory in which you installed the
Actel software.

<filename> is the name, including a relative or full path, of the Tcl script
file you wish to execute.

To pass arguments from the command line to your Tcl script file, change the
script:<filename> to script:”<filename arg1 arg2 ...>”

where:

arg1, arg2 and ... are arguments you are passing to the script file.

Note: The quotes are required when passing arguments to the Tcl script.

To access arguments inside the Tcl script, use $argv0 to access the Tcl script
filename.

Use the following command to access arguments from the command line:

[lindex $argv 0]
113

Chapter 3: Scripting
Note: $argv0 is not the same as[lindex $argv 0]. Also, the number in the
previous command is the position of the argument on the command
line you are trying to access. Counting starts at 0.

Running Scripts within Designer

To execute a Tcl script file within Designer:

1. In the File menu, click Execute Script File. This displays the
Execute Script dialog box, as shown in Figure 3-1.

Figure 3-1. Execute Script Dialog Box

2. In the Script File edit box, enter the name of the script file.
You can use the browse button to bring up a file dialog browser and select
the script file from that dialog box.

3. Enter arguments you wish to pass to your Tcl script in the
Arguments edit box. For information about accessing arguments
passed to a Tcl script, see page 113.

4. Click Run.

Recording Scripts
Designer can export a Tcl script file that contains commands executed in the
current session. You can then use this exported Tcl script to re-execute the
same commands interactively or in batch. You can also use this exported script
to become more familiar with Tcl syntax.
114

Recording Scripts
To export a Tcl script from Designer:

1. In the File menu, click Script Files from the Export sub-
menu. The Export Tcl Script File dialog box is displayed, as shown in
Figure 3-2.

Figure 3-2. Export Tcl Script Files Dialog Box

2. Specify a filename.

3. Click Save. A Script Export Options dialog box is displayed, as shown in
Figure 3-3.

Figure 3-3. Script Export Options Dialog Box.

4. Check the Include Commands for Current Design Only
checkbox if you want to export commands relative to the
current design only. This only applies if you had open more than one
115

Chapter 3: Scripting
design in your current session. If so, and you do not check this box,
Designer exports all commands from your current session.

5. Select the radio box for the appropriate filename formatting.
If you want to export filenames relative to the current working directory,
select relative filenames formatting. If you want to export filenames that
include a fully specified path, select qualified filenames formatting.

6. Click OK. The Tcl script file is exported to the specified filename.

Note: When exporting Tcl scripts, Designer always encloses filenames in curly
braces since this is portable and there are no variables used in the
generated Tcl commands.

Example Scripts

Basic Design
Flow

#Set up a new design
new_design -name “prepi” -family “54SXA”

#set device name, package name
set_device -die "A54SX32A" -package "176 TQFP"

#set device speed and operating conditions
set_device -speed "-1" -temprange "com" -voltrange "com"

#import netlist and pin files
import -format "edif" -netlist_naming "Generic" \
 -edif_flavor "GENERIC" {prepi.edn}
import -format "pin" {prepi.pin}

compile

#layout standard mode
layout -incremental "OFF"

#extract sdf file
export -format "sdf" {prepi.sdf}

save_design {prepi.adb}

close_design
116

Example Scripts
Command Line
Arguments to
the Script File

puts "Script name is $argv0" ; # accessing the scriptname

puts "first argument is [lindex $argv 0]"

puts "second argument is [lindex $argv 1]"

puts "third argument is [lindex $argv 2]"

puts "number of argument is [llength $argv]"

set des_name [lindex $argv 0]
puts "Design name is $des_name"

Note: The comment delimiter, #, must be the first character on a line or
the first character following a semicolon (in Tcl, commands are
separated by new lines or semicolons).

Exception
Handling

If you want to control the flow of the Designer software based on certain
conditions (e.g. success or failure of certain commands), you can use the tcl
built-in catch command as follows:

if { [catch {open_design $des_name.adb}] } {

 puts "Cannot open $des_name.adb"

 export -format "log" -diagnostic $des_name.log"
 exit 1
} else {

 puts "Design $des_name.adb Successfully Opened"
}

set layout mode to standard
layout -incremental "OFF"

if { [catch {layout}] } {

 puts "Layout Failed"

 export -format "log" -diagnostic $des_name.log"
 exit 1
} else {

 puts "layout successful"
117

Chapter 3: Scripting

 export -format log "$des_name.log"

 save_design "$des_name.adb";
 close_design
}

Extended
Layout These extended layout Tcl scripts force layout to run with an extended set of

parameters. These scripts cause the layout to run for a much longer period of
time in an attempt to achieve greater performance and routability.

The purpose of these scripts is to run multiple layout iterations on a design
using different initial seeds for the placer. Each script checks the timing report
for the best performance from all the runs, and saves that design.

The design must be completed through Compile.

Defaults: Run 5 Layout iterations with different placer seeds. Layout is done in
timing driven mode. Performance is measured using the default mode (highest
frequency of the slowest clock).

Arguments:

-n value

allows you to specify the number of iterations of layout. The maximum is 25
and the default value is 5.

-c clockname

allows you to specify the clock that will be optimized for the maximum
register to register delay.

Results:

With no clockname provided:

The iteration with the highest frequency of the slowest clock is chosen as the
best result. The design is saved with this result.

With clockname provided:
118

Example Scripts
The iteration with the minimum value of the maximum register to register delay
for the specified clock is chosen as the best result. The design is saved with this
result.

Running from the Designer GUI

Recommended for Windows users.

To run the script:

1. From the File menu, click Execute Script.

2. From the Execute Script dialog, use the file browser to select
the iterate.tcl script found in the script sub-directory under
the software installation directory.

3. Enter any of the optional parameters in the "Arguments"
field.

4. Click the Run button.

Running from the Command Line

Recommended for UNIX users.

Additional Arguments:

-adb filename

Specify the design file (.adb) on which to run the extended layout script.

To run the script:

1. From your command line shell, execute the following:

<location of Actel software>/bin/acttclsh <location of Actel
software>/scripts/sh_iterate.tcl -adb filename [-n value]
[-c clockname]

2. The script runs the Designer software in batch mode and
report the results in the shell window.

3. On error, a non-zero value will be returned.
119

Chapter 3: Scripting
Axcelerator
Script

#Set up a new design
new_design -name "multiclk" -family "Axcelerator" -path {.}
Set device, package, speed grade, default I/O standard and
operating conditions
set_device -die "AX1000" -package "BG729" -speed "-3" -voltage
"1.5" -iostd "LVTTL" -temprange "COM" -voltrange "COM"
Import the netlist
import -format "verilog" {multiclk.v}
Compile the netlist
compile
Import a PDC file
import_aux -format "pdc" {multiclk.pdc}
Run standard layout
layout -incremental "OFF"
Generate backannotated sdf and netlist file
backannotate -name {multiclk_ba} -format "sdf" -language
"Verilog"
Generate timing report
report -type "timing" -sortby "actual" -maxpaths "100"
{report_timing.txt}
Generate programming file
export -format "AFM" -signature "ffff" {multiclk.afm}
120

A
Constraints in ProASIC and ProASIC PLUS
Devices

This appendix describes the constraints that can be used to guide place and
route, and to set optimization criteria for ProASIC and ProASICPLUS devices.
These constraints may be the forward timing SDF file generated by the
synthesis tool. If the constraints are relative to the placement, the global
resources and the netlist optimization, they should be included in a file with the
.gcf extension.

ProASIC constraint files (GCF), which are imported using Designer, must use
the language and syntax described in this appendix.

Types of Constraints
Constraints are used to ensure that a design meets timing performance and
required pin assignments. The types of constraints that can be defined in a .gcf
constraint file include:

• Timing constraints

• Global resource constraints

• Netlist optimization constraints

• Placement constraints

• I/O constraints

ProASIC Timing Constraints
Timing constraints are used to ensure that a design meets the required timing
performance. Constraints can be entered using an ProASIC constraints file
(.gcf) or using an SDF path constraints file. These forward SDF files are
generated by synthesis tools. The two formats cannot be combined in one file.
However, SDF files and ProASIC (.gcf) constraint files can be used for the
same design. Place and Route considers timing constraints and attempts to
meet them.
121

Appendix A: Constraints in ProASIC and ProASIC PLUS Devices
After routing, Designer displays messages to identify the constraints that
cannot be met.

Timing
Constraints
Guidelines

To understand the complexity of a design and its performance, perform
placement and routing with no constraints to see if routing can complete
without constraints. If routing completes successfully, create the timing
annotation files and backannotate the post-layout delays to see if the physical
design meets timing requirements. If you are using a synthesis tool such as
Synopsys Design Compiler, Actel recommends that you use it to generate a
forward SDF file containing path constraints only.

If these requirements are not met, you can guide timing driven place and route
by forward annotating the SDF generated by the synthesis tool. Timing
constraints must be reasonable. Over constraining a design may result in
increased place and route run times, while not improving circuit performance.

Constraint File
Syntax

A ProASIC constraint consists of a statement and an argument, terminated by a
semicolon. Statements are not case sensitive. However, cell instance, net, and
port names used as arguments may be quoted and are case sensitive. Except for
white spaces, all ASCII characters can be used. Comments are allowed in
constraints files and must be preceded by two forward slashes (//). Time values
are given in nanoseconds. When constraints are duplicated, the last one
specified for a specific item overwrites any previous similar constraints already
specified for the considered item.

Highlevel Timing Constraints
create_clock

Use this statement to define clocks for the design. Multiple clocks can be
specified for a given design.

create_clock -period <period_value> {netname|portname}

Where “period_value” is the clock period in nanoseconds and
“netname|portname” is the name of the net through which the clocks gets
propagated or name of the external port.
122

Highlevel Timing Constraints
For example, the following statement creates a clock on external port “clk”
with a period of 25.0 nanoseconds.

create_clock -period 25.0 clk;

generate_paths

Use this statement to modify the way importer generates internal path
constraints for placer to do timing driven placement.

generate_paths [-cover_design] [-max_paths <maxpaths>

[-top <percentage>];

Where “-cover_design” indicates to Designer to use the “cover design”
algorithm instead of the default worst paths algorithm, “-max_paths” is the
maximum number of paths that will be generated (default is 20% of the
number of nets with minimum of 1000 or if cover_design is specified twice the
number of nets with a minimum of 1000), “-top” indicates the top percentage
of worst paths that will be generated (default is 20%).

For example, the following statement generates 4000 maximum paths using the
-cover_design algorithm.

generate_paths -cover_design -max_paths 4000;

set_false_path

Use this statement to define false paths in the design. These paths will not be
considered in timing driven place and route system.

set_false_path [-from from_port] [-through any_port] [-to
to_port];

Where “from_port” must be an input port of the design or a register or
memory instance output pin, “to_port” must be an output port of the design or
a register or memory instance input pin, “any_port” must be any instance pin.
Wildcards are permitted.

For example, the following statement sets all paths starting from “resetd”
which are going through instance “const2” as false paths.

set_false_path -from resetd -through const2/*;
123

Appendix A: Constraints in ProASIC and ProASIC PLUS Devices
set_input_to_register_delay

Use this statement to define the timing budget for incoming signals to reach a
register:

set_input_to_register_delay <delay> [-from inp_port];

Where “delay” is the timing budget for this input path, “inp_port” is a register
or memory instance output pin. Wildcards are permitted.

For example, the following statement specifies that the timing budget is 22
nanoseconds to the register from all inputs who’s names are starting with letter
“I”.

set_input_to_register_delay 22 -from I*;

set_multicycle_path

Use this constraint to define how many clock cycles a signal has to travel
through these paths. The budget of these paths will be a multiple of the period
of the clock controlling the from port.

set_multicycle_path <num_cycles> -from reg_port [-
through_any_port] [-to_port];

Where “num_cycles” is the number of clock cycles in which the signal needs to
propagate through the path, “reg_port” is a register of memory instance,
“to_port” must be an output port of the design or a register or memory
instance input pin, “any_port” must be any instance pin. Wildcards are
permitted.

For example, the following statement specifies it takes two clock cycles to reach
signals from instance pins /us/u1/dff*.q to instance pins /u4/ mem1/*.D”.

set_multicycle_path 2 -from /us/u1/dff*.q -to /u4/mem1/*.D”

set_register_to_output_delay

Use this statement to define the timing budget for outgoing signals to be
clocked out.

set_resgister_to_output_delay <delay> -to out_port;
124

Timing Constraints
Where “delay” is the timing budget for this output path, “out_port” must be an
output port of the design. Wildcards are permitted.

For example, the following statement specifies the timing budget for clocking
out signals on output ports starting with “O” is 22 nanoseconds.

set_register_to_output_delay 22 -to O*;

Timing Constraints
net_critical_ports

Use this statement to specify a specific subset of critical ports on a net.

For example, the following statement identifies two inputs of the net “/u1/u2/
net1” that are more critical than all other connections on that net. All other
connections on the net will be buffered with a “BUF” cell that will be placed in
a tile to reduce fanout delay on the specified inputs:

net_critical_ports /u1/u2/net1 nandbk1.A sigproc.C;

set_critical

Use this statement to specify critical nets and their relative criticality over other
critical nets.

set_critical criticality_number hier_net_name

[,hier_net_name …];

Where “criticality_number” is from 1 to 5 (1 being the default criticality for
every net and 5 the highest). “hier_net_name” is the full hierarchical net name.

For example, the statements below set the timing of “u1/u2/ net1” more
critical than “u1/u2/net5 and u1/u2/net3”:

set_critical 5 /u1/u2/net1;

set_critical 2 /u1/u2/net5, u1/u2/net3;
125

Appendix A: Constraints in ProASIC and ProASIC PLUS Devices
set_critical_port

Use this statement to identify design I/O ports that have above-normal
criticality. The criticality number scales is the same for the “set_critical”
statement.

set_critical_port criticality_number signal_name

[,signal_name …];

Where “signal_name” is the name of a user-defined signal associated with a
specific I/O pin on the part.

For example, the following statement sets all nets associated with device ports
IOBus[3] and IOBus[5] to have criticality 3:

set_critical_port 3 IOBus[3], IOBus[5];

set_max_path_delay

Use this statement to constrain the maximum delay on paths. The calculate
timing task will report a note in the timing report file if this delay is not met.

set_max_path_delay delay_value

hier_inst_name_.inst_port_name

[,hier_inst_name .inst_port_name , …];

Where “delay_value” is a floating integer for delay in nanoseconds,
“hier_inst_name” is the hierarchical path to a cell instance, and
“inst_port_name” is a port name of a cell instance.

For example:

set_max_path_delay 12.5 "mult4/mult/nand2_2".Y, "mult4/mult/

nand3_1".A,"mult4/mult/nand3_1".Y,"mult4/mult/nor2_2".A;
126

Global Resource Constraints
set_switch_threshold

Use this statement to specify the number of switches the router is allowed to
route a net through, before it has to insert an active repeater while routing the
specified net. The default for all nets is 8.

set_switch_threshold <threshold> <net_name>;

Where “threshold” is a integer for the threshold, range 4 to 16, and
“net_name” is the name of the net(s) the threshold should be used for.
Wildcards are permitted.

For example:

set_switch_threshold 6 core/fsm/state_1;

set_switch_threshold 6 core/fsm/state_*;

Global Resource Constraints
Each ProASIC device includes four global networks that have access to every
tile. These four global networks provide high speed, low skew performance to
signals such as clocks and global reset.

Once the netlist is imported, Designer sets global resource parameters and
promotes the highest fanout nets to the remaining global resources unless the
“dont_fix_globals” statement has been specified in a constraint file. To do this,
the importer program demotes appropriate global cell instantiations in the
design netlist.

Note: When using the “dont_fix_globals” statement, global assignments made
in the constraint files and design netlist will be honored (the constraint
file entries will take precedence).

These global resource parameters can be supplemented by including globalg
resource constraints in a constraint file. Global resource constraints can define
which signals are assigned to global resources and which signals cannot be
promoted to global resources. Global resource constraints can also override the
default action that selects high fanout nets for use by the global resources. If
global resources overrides the default action, assignments that do not include
any of the four highest fanout nets will generate a warning.
127

Appendix A: Constraints in ProASIC and ProASIC PLUS Devices
Priority Order
for Global
Promotion

While assigning signals to global resources, Designer considers this information
in the given priority:

1. “set_global” and “set_io statements”

2. Nets with the highest potential fanout above 32 (after removal of all buffers
and inverters).

3. Global cell instantiation in a netlist

Note: By default, a net with a fanout of less than 32 will not be promoted to
global automatically unless the “set_global” or “set_io” constraint
statements is used for this net. Users can override this threshold of 32 by
using the “set_auto_global_fanout” constraint statement..

Figure 3-4. Global Resource Promotion Scheme

Promote set_global
& set_io <global> constraint

nets to global nets

Identify highest
fanout nets exceeding
fanout of 32 & promote

them to remaining globals nets

All globals
nets used

Promote Global Pad
Instantiation to

Globals

NO

All globals
nets used

FINISH

Yes

NO

Finish

Yes

Finish
128

Global Resource Constraints
Global
Resource
Constraint
Syntax

The following section describes the global resource constraints that can be set
in your .gcf file.

set_auto_global

Use this statement to specify the maximum number of global resources to be
used. The tool assigns global resources to high fanout signals automatically.

If the user specifies a number that exceeds the actual number of global
resources available in the device, the checker ignores the statement. If the user
specifies 0, no automatic assignment to global resources will take place.

set_auto_global number ;

For example, the following statement specifies that of the possible four global
nets available, the tool can automatically promote only two high fanout nets:

set_auto_global 2;

set_auto_global_fanout

Use this statement to set the minimum fanout a net must have to be considered
for automatic promotion to a global. By default this is set to 32.

set_auto_global_fanout number ;

For example, the following statement determines that a net must have at least a
fanout of 12 before the checker program will consider it for automatic
promotion to a global resource.

set_auto_global_fanout 12;

set_global

Use this statement to classify nets as global nets.

{ set_global } hier_net_name [, hier_net_name …];

For example:

set_global u1/u3/net_clk, u3/u1/net_7;
129

Appendix A: Constraints in ProASIC and ProASIC PLUS Devices
set_noglobal

Use this statement for classifying nets to avoid automatic promotion to global
nets.

{ set_noglobal } hier_net_name [, hier_net_name …];

For example:

set_noglobal u2/u8/net_14;

If the net was previously assigned to a global resource, this statement will
demote it from the global resource.

dont_fix_globals

Use this statement to turn off the default action that automatically corrects the
choice of global assignment to use only the highest fanout nets.

dont_fix_globals;

use_global

Use this statement to guide place-and-route to route the net using the specified
global spine from the global network.

use_global spine netname;

Where “spine” is one of the spines T1 to T<n> or B1 to B<n>, “netname” is
the name of the net. See table for a summary of available spines.

Table A-1. Global Spine Usagea

Device Spine

A500K050
T1 to T3

B1 to B3

A500K130
T1 to T5

B1 to B5
130

Global Resource Constraints
A500K180
T1 to T6

B1 to B6

A500K270
T1 to T7

B1 to B7

APA075
T1 to T3

B1 to B3

APA150
T1 to T4

B1 to B4

APA300
T1 to T4

B1 to B4

APA450
T1 to T6

B1 to B4

APA600
T1 to T7

B1 to B7

APA750
T1 to T8

B1 to B8

APA1000
T1 to T11

B1 to B11

a. Note that T1 and B1 are the leftmost top and bottom global
spines, respectively.

Table A-1. Global Spine Usagea

Device Spine
131

Appendix A: Constraints in ProASIC and ProASIC PLUS Devices
This statement instruct the placer to place the driver cell of the net close to the
indicated spine and place all other cell instances connected to that net within
the spine region. Then the router will be instructed to route this net through
the specified global spine resource.

For Example, the following statement specifies that the net u3/u1/clk should
be routed using the global spine B3.

use_global B3 u3/u1/clk;

Netlist Optimization Constraints
Netlist optimization attempts to remove all cells from a netlist that have no
effect on the functional behavior of the circuit. This reduces the overall size of
a design and produces faster place and route times. This optimization is based
on the propagation of constants and inverter pushing and takes advantage of
inverted inputs of the basic logic elements. Refer to the ProASIC 500K Family
Data Sheet for detailed information.

Netlist optimization can be controlled by including netlist optimization
constraints in constraint files submitted to Designer.

By default all optimizations will be performed on the netlist. To control the
amount of optimization that takes place, netlist optimization constraints can be
used. Netlist optimization constraints can turn off all optimizations or disable
the default action that allows all optimizations to limit the type of optimizations
performed. The constraints can also define a maximum fanout to be allowed
after optimizations are performed and isolate particular instances and
hierarchical blocks from the effect of optimization.

After completion of netlist optimization, the design is a functionally identical
representation of the design produced internally for use by Designer. View the
design’s layout after successful placement and routing. After optimization, a
number of instances that do not contribute to the functionality of the design
may have been removed.

To keep the SDF file consistent with the original input netlist, deleted cells are
written with zero delay so that backannotation is performed transparently.
132

Netlist Optimization Constraints
Netlist
Optimization
Constraint
Syntax

The following netlist optimization options are available for all netlist
optimization constraints.

• buffer - removes all buffers in the design provided that the maximum fanout
is not exceeded.

• const - replaces all logical elements with one or more inputs connected to a
constant (logical “1” or “0”) by the appropriate logic function. If the
replacement logic function is identified as an inverter or buffer, that element
is removed.

• dangling - recursively removes all cells driving unconnected nets.

• inverter - removes all inverters in the design provided that the maximum
fanout is not exceeded.

The following sections describe the netlist optimization constraints that are
available.

dont_optimize

This statement turns off all netlist optimizations. When followed by one or
more of the netlist optimization options, this statement turns off the named
optimization option.

dont_optimize [{ inverter buffer const dangling}];

optimize

This statement turns on all netlist optimizations (the default mode). When
followed by one or more of the netlist optimization types, this statement
enables only the named optimization(s).

optimize [{ inverter buffer const dangling}];

For example:

optimize buffer inverter;

set_net_region

This GCF constraint enables you to put all the connected instances, Driver and
all the driven instances, for the net(s) into the target rectangle specified in the
constraint. It puts the region constraint on all the connected instances, which
133

Appendix A: Constraints in ProASIC and ProASIC PLUS Devices
will be processed by the placer. The global IOs are excluded from the region
constraints.

set_net_region (x1, y2, x2, y2) <net_name_wildcard>;

set_max_fanout

Use this statement to specify the maxFanout limit on the specific nets. Use
when optimizing the buffers and inverters. The buffers and inverters are not
removed if the fanout for the given net exceeds the given limit.

set_max_fanout NUMBER <net_name_wildcard>;

use_global

This statement allows you to give a rectangle of spine region which may
encompass more than 1 spine region.

use_global B1, T3 <net_name>;

For example, if you give the spine rectangle as B1, T3. The driven instances of
the given net get a region constraint which encloses the rectangle including the
spine rectangle B1, T1, B2, T2, B2, T3. It tries to place the driver as close to
center of the rectangle as possible.

You can specify the following type of rectangles:

1. Bn, Bm : n<=m will mean Bn, Bn+1, ... Bm

2. Tn, Tm : n<=m will mean Tn, Tn+1, ... Tm

3. Bn, Tm : n<=m will mean Bn, Tn, Bn+1,Tn+1 ... Bm, Tm

4. Tn, Bm : n<=m will mean Bn, Tn, Bn+1,Tn+1 ... Bm, Tm

dont_touch

This statement allows the user to selectively disable optimization of named
hierarchical instances. The wildcard “*” can be used to isolate all sub-blocks
under the named block.
dont_touch hier_net_name [, hier_net_name …];

For example:
134

Netlist Optimization Constraints
dont_touch /U1/myblock/*;

The statement in this example will enable only the buffer and inverter
optimization types and optimization will be done on all instances except those
contained in the block called /U1/myblock.

Placement
Contraints

It is possible to use placement constraints to specify block-instance and macro
placement. Users can specify initial, fixed, region, and macro placements. Also,
placement obstructions (locations that are not to be used and thus to be keep
empty during placement instances) can be specified.

For example, a constraint that places two connected blocks close together
usually improves the timing performance for those blocks. Similarly, a
constraint that assigns an I/O pin to a particular net forces the router to make
the connection between the driving or receiving cell and the I/O itself.

Like all constraints, placement constraints limit Designer’s freedom when
processing the design. For instance, assigning a fixed location makes that
location unavailable during placement optimization. Such removal usually limits
the program’s ability to produce a chip-wide solution.

Creating the I/O Allocation Pin Map

If the printed circuit board (PCB) has been designed that will include the
ProASIC part, there may be a need to fix the pin assignments for the physical
design. The easiest way to do this is to use PinEdit. Refer to the PinEdit User’s
Guide for more information.

Package Pin
and Pad
Location

Generally, users will be concerned with the mapping of signals (ports) to the
pins of the selected package. However, users may want to control the allocation
of signals to particular pads. This is accomplished by assigning ports to the pad
location rather than to the package pin. Because all pads are pre-bonded to
package pins, the effect is to assign ports to package pins, with the emphasis on
pad location rather than package pin.

Pad location is described by the letters N (North), S (South), E (East) or W
(West) followed by a space and a number. This location code determines the
direction and offset of the pad with respect to the die.
135

Appendix A: Constraints in ProASIC and ProASIC PLUS Devices
The top edge of the viewer contains the North pads and the right edge contains
the East pads. The number refers to the pad position along its edge. For
example, N 48 corresponds to the 48th pad along the North edge of the die.
Figure 4-2 on page 78 shows the numbering system used for pad location.

Figure A-1. Pad Locations

Individual
Placement
Constraint
Syntax

This section describes the types of individual placement constraints that are
available. Individual placement constraints can be useful if users want to force
certain critical blocks to be fixed locations, or guide the placement program for
the initial location of blocks.

set_empty_location

Use this statement to specify a location in which no cell should be placed.

set_empty_location (x ,y);

set_empty_location (xbl ,ybl xtr ,ytr);

Where x , y (required) are the (x, y) tile coordinates that specify the empty cell
location and x bl , y bl x tr , y tr (required) are the x, y tile coordinates for the
bottom left and top right corner of the region.

Note: Only white spaces are allowed between the coordinates.

For example, the following statement informs the placement program that
location (3, 7) is unavailable for cell placement:

l

l

l
m

n
m

l

n

North

South

West East
136

Netlist Optimization Constraints
set_empty_location(3,7);

set_empty_location(113,160,80); //dont.use 33% tile on East

Side

set_empty_io

Use this statement to specify a location in which no I/O pin should be placed.
The location can be specified by side and offset or by name.

set_empty_io { package_pin | pad_location};

For example, the following statement forces pin B5 and the pin associated with
the fourth tile on the North side to be empty:

set_empty_io B5, (N,4);

set_initial_io

Use this statement to initially assign package pins to I /O ports or locate I /O
ports at a specified side of a device. The placer can reassign or relocate the cells
during placement and routing.

set_initial_io { package_pin | pad_location} io_port_name

[, io_port_name , …];

Where “package_pin” is a package pin number for a specified I/O cell.

If you use “package_pin,” only one “io_port_name” argument is allowed
(required if no pin location is given). “pad_location” is one of N, S, E, or W,
followed by a pad location number on the chip; constrains the pin location of a
specified I/O cell to a specific pad location on the chip. Only one
“io_port_name” argument is allowed (required if no package pin or side is
given). “io_port_name” (required) is the name of an I/O port to be assigned to
a package pin or located at a specified edge of a package.

The following example statement initially places the I/O associated with net
in3 to package pin A11:

set_initial_io A11 in3;
137

Appendix A: Constraints in ProASIC and ProASIC PLUS Devices
The following example statement initially places the I/O associated with net
in4 on the fourth tile on the North side:
set_initial_io (N,4) in4;

set_io

Use this statement to either assign package pins to I/O ports or locate I/O
ports at a specified side or location of a device. This constraint is a hard
constraint and can not be overruled by the placer. This may have an impact on
the timing results of a design. If a hard constraint is not suitable, use the
“set_initial_io” constraint.

set_io { package_pin_name | location_definintion };

For example:

set_io A9 in1;

set_io (S,22) in2;

set_location

Use this statement to locate a cell instance at specified x,y coordinates. The
placer cannot relocate the cell instance during place and route.

set_location (x, y) hier_inst_name ;

set_empty_location (x bl ,y bl x tr ,y tr) hier_inst_name/*;

Where x , y (required) are the (x, y) tile coordinates that specify the empty cell
location and x bl , y bl x tr , y tr (required) are the x, y tile coordinates for the
bottom left and top right corner of the region.

For example:

set_location (1,15) u4/u3/nand3_4;

set_location (1,1 32,32) datapath/*;
138

Netlist Optimization Constraints
set_initial_location

Use this statement to initially locate a cell instance at specified x, y coordinates.
The placer can relocate the cell instance during place and route.

set_initial_location (x, y) hier_inst_name ;

Where x , y (required) are the x, y tile coordinates for the location of a specified
cell instance and “hier_inst_name” (required) is the hierarchical path to a cell
instance.

For example:

set_initial_location (43,105) bk3/fp5/nand3_4;

Macro
Placement
Constraint
Syntax

This section describes the types of macro placement constraints that are
available. Macro placement constraints can be useful if users want to reuse a
previously produced placement for a subcircuit of a design or if the design is
using a predefined core. Use this statement to define the locations of a sub-
design as a macro so that users are able to reuse this placement in different
instantiations of the sub-design. The macro is defined in terms of individual
core placements. The hierarchical instance names, appearing in these
constraints, are considering the macro as the top of the design.

Macro
macro name (x1, y1 x2, y2) {

macro_statements

}

Where name is the macro name identifier, x1, y1 is the lower left coordinates of
the macro, and x2, y2 is the upper right coordinates of the macro.

For example:

macro mult (1,1 6,6) {

set_location...
139

Appendix A: Constraints in ProASIC and ProASIC PLUS Devices
}

Now you can use the “set_location” or “set_initial_location” statements to
place or initially place a sub-design instance by calling its macro and then
applying a translation and rotation. This statement has been extended to allow
you to initially place a sub-design instance by calling its macro and then
applying a translation and rotation.

set_initial_location (x, y) hier_subdesign_inst_name

macro_name [transformations];

For example:

set_location (3,3) a/b mult flip lr;

Where “hier_subdesign_inst_name” is the hierarchical name of the instance of
the sub-design, x, y is the final location of the lower left corner of the macro
after all transformations have been completed, macro_name - is the name of
previously defined macro, and transformations are optional and any of the
following in any order:

• flip lr - flip cell from left to right

• flip ud - flip cell from up to down

• rotate 90 cw - rotate 90° clockwise

• rotate 270 cw - rotate 270° clockwise

• rotate 90 ccw - rotate 90° counter-clockwise

• rotate 180 ccw - rotate 180° counter-clockwise

• rotate 270 ccw - rotate 270° counter-clockwise

The transformations are processed in the order in which they are defined in the
statement.

For example:

set_initial_location (3,3) a/b mult flip lr;
140

Constraint Quick Reference
Constraint Quick Reference
“create_clock” on page 122

“generate_paths” on page 123

“set_input_to_register_delay” on page 124

“net_critical_ports” on page 125

“set_critical” on page 125

“set_critical_port” on page 126

“set_max_path_delay” on page 126

“set_switch_threshold” on page 127

“set_auto_global” on page 129

“set_global” on page 129

“dont_fix_globals” on page 130

“use_global” on page 130

“dont_optimize” on page 133

“optimize” on page 133

“set_net_region” on page 133

“set_max_fanout” on page 134

“dont_touch” on page 134

“set_empty_location” on page 136

“set_empty_io” on page 137

“set_initial_io” on page 137

“set_io” on page 138

“set_location” on page 138

“set_initial_location” on page 139
141

Appendix A: Constraints in ProASIC and ProASIC PLUS Devices
Constraint File Syntax Summary
This section summarizes the syntax used in the constraint file format.

Syntax
Conventions

This section describes syntax conventions for notation, user data variables, and
comments. Comments begin with double slashes (//) and are terminated by a
newline character.

Table A-2. Syntax Conventions for Notation

Notation Description

item Represents a syntax item.

item ::= definition item is defined as definition.

item ::= definition1
||= definition2

item is defined as either definition1 or definition2.
(Multiple alternative syntax definitions are
allowed.)

[item] item is optional.

{ item } item is a list of required items. At least one item
must appear.

KEYWORD
Keywords appear in uppercase characters in
bold type for easy identification, but are not case
sensitive.

VARIABLE
Represents a variable and appears in uppercase
characters for easy identification.
142

Constraint File Syntax Summary
Syntax
Summary

constraint_file ::= constraint_statements

constraint_statements ::= {constraint_statement}

constraint_statement ::= critical_port_statement

| dont_fix_statement

| dont_optimize_statement

| dont_touch_statement

| empty_io_statement

| empty_location_statement

| initial_location_statement

Table A-3. Syntax Conventions for User Data Variables

Variable Description

FILEIDENTIFIER Represents a hierarchical filename.

IDENTIFIER

Represents the name of a design object. Can be a block,
cell instance, net, or port. IDENTIFIERS can use any
ASCII character except the white space and the slash (/).,
which is the hierarchical divider character (see QPATH
below). IDENTIFIERS are case sensitive.

POSFLOAT Represents a positive real number; for example, 4.3, 1.15,
2.35.

POSNUMBER
Represents a positive integer; for example, 1, 12, 140, 64.
When representing time, POSNUMBER is expressed in
nanoseconds (ns).

QPATH

Represents a hierarchical IDENTIFIER. The levels of the
hierarchy are represented by IDENTIFIERS divided by a
slash (/). The QPATH hierarchical IDENTIFIER may or
may not be quoted.
143

Appendix A: Constraints in ProASIC and ProASIC PLUS Devices
| io_statement

| jtag_statement

| location_statement

| macro_define_statement

| max_fanout_statement

| net_criticality_statement

| net_critical_ports_statement

| net_delay_statement

| optimize_statement

| path_delay_statement

| read_statement

| timing_fanout_statement

create_clock_statement :: CREATE_CLOCK -PERIOD POSFLOAT
{net_name|port_name}

critical_port_statement ::= SET_CRITICAL_PORT criticality_number
hier_inst_names;

dont_fix_statement ::= DONT_FIX_GLOBALS;

dont_optimize_statement :=DONT_OPTIMIZE [{buffer inverter clocktree
resettree const dangling}];

dont_touch_statement ::= DONT_TOUCH hier_net_names;

empty_io_statement ::= SET_EMPTY_IO pad_location_defs;

empty_location_statement ::= SET_EMPTY_LOCATION location_def;

SET_EMPTY_LOCATION location_region;

generate_paths_statement ::= GENERATE_PATHS [-
COVER_DESIGN] [-TOP POSNUMBER] [-
MAX_PATHS POSNUMBER];

global_net_statement ::= {SET_GLOBAL | SET_NOGLOBAL}
hier_net_names;
144

Constraint File Syntax Summary
initial_io_statement ::= SET_INITIAL_IO io_location_def
io_port_names;

initial_location_statement ::= SET_INITIAL_LOCATION location_def
hier_inst_names;

| SET_INITIAL_LOCATION location_def
hier_subdesign_inst_name macro_name [transformations];

io_statement ::= SET_IO io_location_def io_port_names;

location_statement ::= SET_LOCATION location_def hier_inst_name;

| SET_LOCATION location_region
hier_name_wildcard;

| SET_LOCATION location_def
hier_subdesign_inst_name macro_name [transformations];

macro_define_statement ::= MACRO macro_name macro_location_def
{macro_statements}

macro_statements ::= {macro_statement}

macro_statement ::= SET_LOCATION location_def hier_inst_name;

| SET_INITIAL_LOCATION location_def
hier_inst_name;

| SET_EMPTY_LOCATION location_def;

max_fanout_statement ::= SET_MAX_FANOUT POSNUMBER;

net_criticality_statement ::= SET_CRITICAL criticality_number
hier_net_names;

net_critical_ports_statement ::= NET_CRITICAL_PORTS hier_net_name
critical_ports;

optimize_statement ::=OPTIMIZE [{buffer inverter resettree clocktree const
dangling}];

path_delay_statement ::= SET_MAX_PATH_DELAY delay_value
delay_path;

read_statement ::= READ [-FORMAT format] [-ECO] file;

set_false_path_statement ::= SET_FALSE_PATH [-FROM portname]
145

Appendix A: Constraints in ProASIC and ProASIC PLUS Devices
[-THROUGH portname] [-TO portname]

set_input_to_register_delay_statemenet ::= SET_INPUT_TO_REGISTER_DELAY
delay_value [-FROM port_name];

set_multicycle_path_statemenet ::= SET_MULTICYCLE_PATH num_cycles [-
FROM port_name] [-TO port_name] [-
THROUGH port_name];

set_register_to_output_delay_statemenet ::=
SET_REGISTER_TO_OUTPUT_DELAY
delay_value [-TO port_name]

set_default_swtich_threshold_statemenet ::=
SET_DEFAULT_SWITCH_THRESHOLD
POSNUMBER;

set_swtich_threshold_statemenet ::= SET_SWITCH_THRESHOLD
POSNUMBER hier_net_name;

use_global_statemenet ::= USE_GLOBAL global_region hier_net_name;

criticality_number ::= POSNUMBER

critical_ports ::= instance_port_name [, instance_port_name]

delay_path ::= instance_port_name [, instance_port_name]

delay_value ::= POSFLOAT

file ::= FILEIDENTIFIER

global_region ::= T1 to T<n> | B1 to B<n>

format ::= SDF | GF

hier_inst_name ::= QPATH

hier_inst_names ::= hier_inst_name [, hier_inst_name]

hier_net_name ::= QPATH

hier_net_names ::= hier_net_name [, hier_net_name]

hier_subdesign_inst_name ::= QPATH

instance_port_name ::= hier_inst_name.port_name
146

Constraint File Syntax Summary
io_location_def ::= side | pad_location | package_pin

io_port_names ::= io_port_name [, io_port_name]

io_port_name ::= IDENTIFIER

location_def ::= (x, y)

location_region ::= (x1, y1 x2, y2)

transformation ::= flip lr

| flip ud

| rotate 90 cw

| rotate 180 cw

| rotate 270 cw

| rotate 90 ccw

| rotate 180 ccw

| rotate 270 ccw

macro_location_def ::= (x1, y1 x2, y2)

macro_name ::= IDENTIFIER

offset ::= POSNUMBER

package_pin ::= IDENTIFIER

pad_location_defs ::= pad_location_def [, pad_location_def]

pad_location_def ::= package_pin | pad_location

pad_location ::= (side , offset)

port_name ::= IDENTIFIER

side ::= N | S | E | W

transformations ::= transformation

| transformation transformations

xgrid ::= POSNUMBER

ygrid ::= POSNUMBER
147

Appendix A: Constraints in ProASIC and ProASIC PLUS Devices
148

B
Setting Up a Printer in UNIX

This appendix contains instructions on how to set-up a printer on Unix.

To specify available printers:

1. In the File menu, click Print. This displays the Print dialog box
(Figure B-1).

Figure B-1. Print Dialog Box

2. Click Properties. This displays the Printer Setup dialog box (Figure B-
2).

Figure B-2. Printer Setup Dialog Box
149

Appendix B: Setting Up a Printer in UNIX
3. Click Install. This displays the Printer Installation dialog box (Figure B-
3).

Figure B-3. Printer Installation Dialog Box

4. Click Add Printer. This displays the Add Printer dialog box
(Figure B-4).

Figure B-4. Add Printer Dialog Box

5. Specify the printer command by defining a new port.

The command used to send output to a specific printer depends on the
platform, printer, and how the printer is connected to your system. For
example, if a printer is connected directly to your system, the following
might be valid a print command:

lp -d ps

If your printer is connected to a different system on your network, your
printer command will specify how to connect to that system. For example,
150

if a printer is connected to the system bandit on your network, the following
might be a valid print command:

rsh bandit lp -d ps

A printer port is an alias for the print command.

To define a new port, click Define New Port. This displays the
Ports dialog box.

6. Type the port definition in the Edit Port edit box. For example,
suppose you have a two printers: ORION and SIRIUS. Your port
definitions may look like the following examples:

ORION=rsh bandit “lp -d ps”
SIRIUS=rsh bandit “lp -d ps -T pcl5”
LOCAL=lp -d ps

In this example, both printers are connected to the system bandit, so the
print command is a remote shell command executed on bandit. ORION is
a PostScript printer, so the command lp -d ps is executed on bandit to
print to ORION. SIRIUS , however, is a PCL5 printer, so the print
command executed on bandit to print to SIRUIS is lp -d ps -T pcl5.
There is also an entry for a printer connected to your local system.

Your printer port can be any name you choose except FILE:, which is the
only reserved port name. It causes Designer to create a print file formatted
specifically for the specified printer type.

7. Add/Replace. The new port is now included in the list of current port
definitions.

8. Select the printer from the Printer Device list box and the
desired port in the Current Port Definitions list box. If no
description matches your printer, contact Actel for a printer description
(PPD) file and install it in the <actel directory>/xprinter/ppds directory.

9. Click Add Selected and Dismiss. This will take you back to the Printer
Installation dialog box.

10. Click Dismiss. The Printer Setup dialog box is displayed.

Not that you’ve specified available printers, you can make one of them the
default printer.
151

Appendix B: Setting Up a Printer in UNIX
To specify a default printer:

1. Click the Properties button from in the Printer dialog box.

2. Click the Options button in the Printer Setup dialog box.

<display option dialog box>

3. From the Printer Name drop-down list, select the desired
printer and click OK.

4. Click Save on the Printer Setup dialog.

To set printer options:

• The specific options available vary between printers.

1. Click the Properties button in the Printer dialog box.

2. Set all fields to the desired values. The following table describes all
printer setup fields:

Table B-1. Printer Setup Options

Option Description

Output Format

Specify whether to send output to a file or to a printer. If you
choose Printer Specific, you can send output to any available
printer. If the port is FILE:, Designer creates an output file
specifically for the specified printer type. If you choose
Generic (File Only), print output is sent to an Encapsulated
PostScript or generic PCL file.

Printer

This field only appears if you select Output Format: Printer
Specific. It specifies the name of the default printer to send
print output to. Click the Options button to specify a different
printer.

File Name

This field only appears if you select Output Format: Generic
(File Only). Type the name of the print file you wish to create.
To pipe print output to a command, type a ! character as the
first character and then specify the command to pipe output to.
For example, to pipe output to the lp command, enter the fol-
lowing: !lp -s ps.
152

3. Click Options to set additional options, such as selecting a
new printer or changing the page size.

4. Set all options to the desired values. The following table describes
all printer options:

5. Click Save to make your changes take effect and make them
the new default values, or click Apply to make your changes
take effect without changing the default values.

EPSF
PCL4
PCL5

This field only appears if you select Output Format: Generic
(File Only). Click this button to display a list of output file
types and select the desired type. Available types are EPSF
(Encapsulated PostScript), PCL4, and PCL5.

Orientation Specify portrait or landscape.

Scale

To increase the size of the output, specify a value greater than
1.00. To reduce the size, specify a value less than 1.00. For
example, a value of 2.00 would double the size of the output; a
value of 0.50 would reduce it by half.

Copies Specify the number of copies to print.

Table B-2. Additional Printer Options

Option Description

Printer Name Use to change the Printer on the Setup dialog. Click the down
arrow to display a list of available printers.

Resolution Specify printer resolution. Values vary among different print-
ers.

Page Size Specify page size. Values vary among different printers.

Paper tray Specify tray where paper is located. Values vary among differ-
ent printers.

Table B-1. Printer Setup Options (Continued)

Option Description
153

Appendix B: Setting Up a Printer in UNIX
154

C
Product Support

Actel backs its products with various support services including Customer
Service, a Customer Technical Support Center, a web site, an FTP site,
electronic mail, and worldwide sales offices. This appendix contains
information about contacting Actel and using these support services.

Actel U.S. Toll-Free Line
Use the Actel toll-free line to contact Actel for sales information, technical
support, requests for literature, Customer Service, investor information, and
using the Action Facts service.

The Actel toll-free line is (888) 99-ACTEL.

Customer Service
Contact Customer Service for non-technical product support, such as product
pricing, product upgrades, update information, order status, and authorization.

From Northeast and North Central U.S.A., call (408) 522-4480.
From Southeast and Southwest U.S.A., call (408) 522-4480.
From South Central U.S.A., call (408) 522-4434.
From Northwest U.S.A., call (408) 522-4434.
From Canada, call (408) 522-4480.
From Europe, call (408) 522-4252 or +44 (0) 1276 401500.
From Japan, call (408) 522-4743.
From the rest of the world, call (408) 522-4743.
Fax, from anywhere in the world (408) 522-8044.

Actel Customer Technical Support Center
Actel staffs its Customer Technical Support Center with highly skilled engineers
who can help answer your hardware, software, and design questions. The
Customer Technical Support Center spends a great deal of time creating
application notes and answers to FAQs. So, before you contact us, please visit
our online resources. It is very likely we have already answered your questions.
155

Appendix : Product Support
Guru Automated Technical Support
Guru is a web-based automated technical support system accessible through
the Actel home page (http://www.actel.com/guru/). Guru provides answers to
technical questions about Actel products. Many answers include diagrams,
illustrations, and links to other resources on the Actel web site.

Web Site
Actel has a World Wide Web home page where you can browse a variety of
technical and non-technical information. The URL is http://www.actel.com.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center from 7:00 A.M. to
6:00 P.M., Pacific Time, Monday through Friday. Several ways of contacting the
Center follow:

Electronic Mail You can communicate your technical questions to our e-mail address and
receive answers back by e-mail, fax, or phone. Also, if you have design
problems, you can e-mail your design files to receive assistance. We constantly
monitor the e-mail account throughout the day. When sending your request to
us, please be sure to include your full name, company name, and your contact
information for efficient processing of your request.

The technical support e-mail address is tech@actel.com.
156

Contacting the Customer Technical Support Center
Telephone Our Technical Support Center answers all calls. The center retrieves
information, such as your name, company name, phone number and your
question, and then issues a case number. The Center then forwards the
information to a queue where the first available application engineer receives
the data and returns your call. The phone hours are from 7:00 A.M. to 6:00 P.M.,
Pacific Time, Monday through Friday. The Technical Support numbers are:

(408) 522-4460
(800) 262-1060

Customers needing assistance outside the US time zones can either contact
technical support via email (tech@actel.com) or contact a local sales office.
Please see our list of Worldwide Sales Offices.
157

Appendix : Product Support
Worldwide Sales Offices

Headquarters
Actel Corporation
955 East Arques Avenue
Sunnyvale, California 94086
Toll Free: 888.99.ACTEL
Tel: 408.739.1010
Fax: 408.739.1540

US Sales
Offices

California

Bay Area
Tel: 408.328.2200
Fax: 408.328.2358

Irvine
Tel: 949.727.0470
Fax: 949.727.0476

Newbury Park
Tel: 805.375.5769
Fax: 805.375.5749

Colorado

Tel: 303.420.4335
Fax: 303.420.4336

Florida

Tel: 407.977.6846
Fax: 407.977.6847

Georgia

Tel: 770.277.4980
Fax: 770.277.5896

Illinois

Tel: 847.259.1501
Fax: 847.259.1575

Massachusetts

Tel: 978.244.3800
Fax: 978.244.3820

Minnesota

Tel: 651.917.9116
Fax: 651.917.9114

New Jersey

Tel: 609.517.0304

North Carolina

Tel: 919.654.4529
Fax: 919.674.0055

Pennsylvania

Tel: 215.830.1458
Fax: 215.706.0680

Texas

Tel: 972.235.8944
Fax: 972.235.9659

International Sales
Offices

Canada
235 Stafford Rd. West, Suite
106
Nepean, Ontario K2H9C1,
Canada
Tel: 613.726.7575
Fax: 613.726.8666

France
361 Avenue General de Gaulle
92147 Clamart Cedex
Tel: +33 (0)1.40.83.11.00
Fax: +33 (0)1.40.94.11.04

Germany
Lohweg 27,
D-85375 Neufahrn
Germany
Tel: +49.(0)81.659.584.0
Fax: +49.(0)81.659.584.10

Italy
Via dei Garibaldini 5
20019 Settimo Milanese
Milano, Italy
Tel: +39 (0)2.3809.3259
Fax: +39 (0)2.3809.3260

Japan
EXOS Ebisu Building 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150
Tel: +81 (0)3.3445.7671
Fax: +81 (0)3.3445.7668
Korea
30th floor, ASEM Tower,
159-1 Samsung-dong,
Kangnam-ku, Seoul, Korea
Tel: +82 (0)2.6001.3382
Fax: +82 (0)2.6001.3030

United Kingdom
Maxfli Court
Riverside Way
Camberley, Surrey
GU15 3YL
United Kingdom
Tel: +44 (0)1276.401450
Fax: +44 (0)1276.401490
158

Index
A
Actel

Manuals xiii
web site 156
web-based technical support 156

ADB
file association 84

ASICmaster
constraint file

syntax, conventions for 142
syntax, summary 142

Assigning pins, see PinEdit
Assumptions xii
Auditing files 37
Auxiliary files 30

importing 31
Axcelerator

layout 50
PDC files 33
PinEdit 47

B
Back-Annotation 58
Bitstream 62

C
Changing design information in Designer 65
ChipEdit 47
Combine registers 46
Compile 25, 44

new design 25
Compile options 45

abort on PDC error 46
combine registers 46
fanout warning limit 46
netlist pin properties overwrite 46
Contacting Actel
customer service 155
electronic mail 156
telephone 157
toll-free 155
web-based technical support 156

Customer service 155

D
Design

compiling 44
designs created in previous versions 27
new 25

Design information
changing in Designer 65

Design session
starting 24

Design setup 65
Designer

back-annotation 58
changing design information 65
ChipEdit 47
compile 25
compiling a new design 25
designs created in previous versions 27
exiting 88
exporting files 67
flip flop report 78
importing a design 25
incremental placement 55
layout 50
layout failures 57
new design 25
pin report 77
preferences 83
reports 77
159

Index
selecting a package 66
selecting die 66
selecting speed grade 66
SmartPower
starting 24
status report 72
Timer 48
timing report 72
tools 47

Device
selection 66

Device selection wizard 39
changing device, package, and speed grade 66

Document Assumptions xii
Document Organization xi
DT Layout, see Timing driven layout 51

E
Effort level 57
Electronic mail 156, 157
exiting Designer 88
Exporting

files 67
PDC files 69
STAMP 69

Extended run 56

F
Failures

layout 57
Fanout

adjusting warning level 46
File

association 84
Files

auditing 37
160
auxiliary 30
bitstream 62
exporting 67
fuse 61
PDC 33
SDC 35
source 27
STAMP 69

Flip flop report 78
Fuse 61

G
Generating

bitstream files 62
fuse files 61
programming files 60
reports 72
reports in Designer 77

I
I/O placement, see ChipEdit
Importing

auxiliary files 31
PDC 34

Importing SDC files 35
Incremental placement 55
Internet 84

proxy 84

L
Layout 50

antifuse 50
effort level 57
extended run 56
failures 57
incremental placement 54, 55

Index
router options 56
standard 53
timing driven 54
timing driven failures 57
timing weight 57

N
Netlist

importing into Designer 25
viewing, see Netlist Viewer

Netlist pin properties 46
Netlist Viewer

Designer
Netlist Viewer 48

New design 25

O
Online Help xiii

P
PDC

abort on import error 46
exporting 69
tcl commands 100

PDC (Physical Design Constraint) 33
PDF reader 85
Physical Design Constraint (PDC) 33
Pin

assigning 47
printing a list 77

pin 77
PinEdit

description 47
Placement

incremental 54
Power
report 80
Power analysis, see SmartPower
Preferences

designer 83
internet 84

Printing
pin list 77
timing information 72

ProASIC Layout Viewer 48
Product support 155–158

customer service 155
electronic mail 156, 157
oll-free line 155
technical support 156
web site 156

Programming files 60
bitstream 62
fuse 61

Proxy 84

R
Related Manuals xiii
Report

timing 72
Reports 77

Designer 77
flip flop 78
generating 72
power 80
status 72
timing 72
timing violations 76

reports 72

S
Scripting, see also Tcl
161

Index
SDC (Synopsys Design Constraints 35
Selecting

die 66
package 66
speed grade 66

Setup design
changing design name and family 65

SmartPower 48
Source files 27

importing 28
Stamp 69
Standard layout 51, 53
Starting 24

new design 25
Static timing analysis, see Timer
Status 72
Status report 72
Synopsys Design Constraints (SDC) 35
syntax conventions

comments 142
notation 142

KEYWORD 142
variables 143

FILEIDENTIFIER 143
IDENTIFIER 143
POSFLOAT 143
POSNUMBER 143
QPATH 143

syntax, for constraint file 142

T
Tcl

command orgins 93
command substitution 91
commands

compile 95
162
export 95
get_defvar 96
import 96
import_source 97
layout 97
new_design 98
open_design 98
report 98
save_design 99
set_defvar 99
set_design 99
set_device 99

control structures 92
description 89
Designer commands 95
other features 94
overview 89
PDC 100
PDC commands

reset_io_command 100
reset_iobank 100
reset_net_criticality 100
set_io 100
set_iobank 101
set_location 102

quotes and braces 91
syntax 89
variables 90

Timer 48
Timing

reports 72
violations report 76

Timing driven layout 51
Timing report 72
Toll-free line 155

Index
U
UNIX

PDF reader 85
web browser 85

User Tools 47

V
Violations

timing report 76

W
Web browser 85
Web-based technical support 156
Weight

timing 57
163

164

	Introduction
	Document Organization
	Document Assumptions
	Platform Support
	Your Comments
	Online Help

	Designer: Getting Started
	Starting Designer
	Initiating the Designer Session
	Starting a New Design
	Opening an Existing Design
	Opening Designs Created in Previous Versions of Designer

	Designer
	Designer’s Menu Commands
	File Menu
	View Menu
	Tools Menu
	Options Menu
	Window (PC Only)
	Help Menu

	Toolbar
	Log Window
	Status Bar

	Using Designer
	Starting and Initiating a Design Session
	Starting a New Design
	Opening an Existing Design
	Opening Designs Created in Previous Versions of Designer

	Importing Source Files
	Importing Auxiliary Files
	Importing PDC Files (Axcelerator family only)
	Importing SDC Files
	Importing SDC Files

	Auditing Files
	Device Selection Wizard
	Compiling a Design
	Compile Options
	Netlist Pin Properties Overwrite Existing Properties
	Combine Registers into I/Os
	Abort on PDC Error
	Fanout Messages

	User Tools
	PinEdit
	ChipEdit
	ChipView (ProASIC and ProASICPLUS families only)
	Timer
	Netlist Viewer
	SmartPower
	Back-Annotate

	Place-and-Route Variables (Non-ProASIC and ProASIC PLUS Families)
	Layout
	Layout Options
	Layout Mode
	Place Options
	Route Options
	Advanced Layout Options

	Layout Failures
	Back-Annotation
	Generating Programming Files
	Fuse
	Bitstream and STAPL Files

	Changing Design Name and Family
	Changing Design Information
	Exporting Files
	Exporting Bitstream Files
	Exporting PDC Files
	Exporting STAMP files

	Generating Reports
	Status Report
	Timing Report
	Timing Violations
	Pin Report
	Flip-Flop Report
	Power Report

	Setting Designer Preferences
	Setting the Start-up Directory
	Internet Features
	Setting Your Proxy
	File Association (PC only)
	PDF Reader (Unix Only)
	Web Browser (Unix Only)

	Starting other Applications from Designer
	Saving a Design
	License Details
	Ending the Designer Session

	Scripting
	Tcl Overview
	Basic Syntax
	Variables
	Command Substitution
	Quotes and Braces
	Control Structures
	Command Origins
	Other Features

	Tcl Extension Commands Added by Designer
	PDC Commands
	Error Handling
	Sample PDC Script

	SDC Commands
	Design Object Access Commands
	Timing Constraint Commands
	Limitations

	Tcl Commands for Timer
	Tcl Commands for PinEdit
	Running Scripts from the Command Line
	Running Scripts within Designer
	Recording Scripts
	Example Scripts
	Basic Design Flow
	Command Line Arguments to the Script File
	Exception Handling
	Extended Layout
	Axcelerator Script

	Constraints in ProASIC and ProASIC PLUS Devices
	Types of Constraints
	ProASIC Timing Constraints
	Timing Constraints Guidelines
	Constraint File Syntax

	Highlevel Timing Constraints
	Timing Constraints
	Global Resource Constraints
	Priority Order for Global Promotion
	Global Resource Constraint Syntax

	Netlist Optimization Constraints
	Netlist Optimization Constraint Syntax
	Placement Contraints
	Package Pin and Pad Location
	Individual Placement Constraint Syntax
	Macro Placement Constraint Syntax

	Constraint Quick Reference
	Constraint File Syntax Summary
	Syntax Conventions
	Syntax Summary

	Setting Up a Printer in UNIX
	Product Support
	Actel U.S. Toll-Free Line
	Customer Service
	Actel Customer Technical Support Center
	Guru Automated Technical Support
	Web Site
	Contacting the Customer Technical Support Center
	Electronic Mail
	Telephone

	Worldwide Sales Offices
	Headquarters

	Index

