
v5.1

CoreUART

Product Summary

Intended Use

• Basic Interface to Industry Standard UART Controllers

• Embedded Systems for Sharing Data between Devices
with Limited Pin Counts Using Standard UART Protocols

Key Features

• Asynchronous (UART) Mode – Fully Programmable to any
Baud Rate up to 1/16th of the System Clock Frequency
with Glitch Rejection

• Synchronous Mode – 12 Clock Cycles Required per Byte
Transfer

• 7 or 8 Bits of Data

• Parity (Odd, Even, None)

• Baud Rate Control for Asynchronous Mode

• Both Receive and Transmit are Double Buffered to
Maximize Throughput

Targeted Devices

• MX Family

• SX Family

• SX-A Family

• eX Family

• RT54SX-S Family

• ProASIC/ProASICPLUS Family

• Axcelerator Family

Core Deliverables

• Netlist Version

– Compiled RTL Simulation Model, Compliant with the
Actel’s Libero™ (IDE) Integrated Design
Environment

– Netlist Compatible with the Actel Designer Place-and-
Route Tool (with and without I/O pads)

• RTL Version

– VHDL or Verilog Core Source Code

– Synthesis Scripts

• Actel-Developed Testbench (VHDL)

Synthesis and Simulation Support

• Synthesis: Exemplar, Synplicity, Design Compiler, FPGA
Compiler, FPGA Express

• Simulation: Vital-Compliant VHDL Simulators and
OVI-Compliant Verilog Simulators

Macro Verification

• Simulation Testbench

General Description

The CoreUART is a serial communication controller with a
flexible serial data interface that is intended primarily for
embedded systems. The controller can operate in either an
asynchronous (UART) or synchronous mode. In the
synchronous mode, the same UART protocols are used, but
the baud rate is equivalent to the input clock frequency.
When employing the CoreUART in the synchronous mode,
the interacting devices must operate off of the same system
clock. For the asynchronous mode, the clocks can be the
same or different, including different frequencies. The main
reason to use the synchronous mode is to improve data
bandwidth.

In the asynchronous mode, the CoreUART can be used to
directly interface to industry standard UARTs. The
CoreUART is intentionally a subset of the full UART
capabilities in order to make the function cost effective in a
programmable device. Figure 1 on page 2 illustrates the
various usages for the CoreUART.

Case A in Figure 1 on page 2 represents the interface to an
industry standard UART like an 8251 or a 16550. For this
case, the CoreUART must operate in an asynchronous mode
and the baud rates of the UART must match a standard
UART. Case B in Figure 1 on page 2 represents an
embedded system. In case B, both CoreUARTs can operate
either asynchronously or synchronously if CLKA = CLKB. If
the clocks are different, then the UART must operate in
asynchronous mode. Users need to ensure that the baud
rates are equal for proper data transfers.
December 2002 1
© 2002 Actel Corporation *See Actel’s website for the latest version of the datasheet.

CoreUART
Functional Block Diagram of
CoreUART

Figure 2 shows the block diagram of the CoreUART core
functionality. The baud generator creates a divided down
clock enable that correctly paces the transmit and receive
state machines. For the synchronous case, the baud
generator is not utilized.

The function of the receive and transmit state machines are
affected by the control inputs bit8, parity_en, and
odd_n_even. These signals indicate to the state machines
how many bits should be transmitted. In addition, the
signals also suggest the type of parity, and if parity should be
generated or checked. For asynchronous operation, the
activity of the state machines is paced by the outputs of the
baud generator.

To transmit data, the data is first loaded into the transmit
data buffer. Data can be loaded into the buffer until the
TXrdy signal is driven inactive. The transmit state machine
will immediately begin to transmit data and will continue
transmission until the data buffer is empty. The state
machine first transmits a START bit, followed by the data
(LSB first), then the parity (optional), and finally the STOP
bit. The data buffer is double buffered, so there is no loading
latency.

The receive state machine monitors the activity of the Rx
signal. Once a START bit is detected, the receive state machine
begins to store the data in the receive buffer until the
transaction is complete, which in turn activates the receive_full
signal, indicating valid data is available. Parity errors are
reported on the parity_err signal (if enabled), and data overrun
conditions are reported on the overflow signal.

Figure 1 • System Block Diagram Depicting CoreUART
Usage

UART

Actel
Device

Industry
Standard

UART

TX

RX

CLKA

UART

Actel
Device

TX

RX

CLKA

UART

Actel
Device

CLKA

CLKB

Case A

Case B

Figure 2 • Block Diagram of the CoreUART Functionality

Transmit
State

Machine

Receive
State

Machine

Baud
Generator

Data
Buffer Data

Buffer

receive_full
data_out[7:0]

parity_en
bit8

odd_n_even

TXrdy
data_in[7:0]

parity_err
overflow
rx

tx

baud_val
2 v5.1

CoreUART
I/O Signal Descriptions
Signal descriptions for the CoreUART are defined in
Table 1. The signals are broken down into the following
classes: system signals, parallel data transfer signals, serial
control and status signals, and serial data signals. System
signals consist of the CLK and reset_n signals. Parallel data

transfer signals include data_in[7:0], data_out[7:0], WEn,
OEn, and CSn. Control signals are bit8, parity_en,
odd_n_even, and baud_val. Status signals are TXrdy,
receive_full, parity_err, and overflow. The serial data
signals consist of Rx and Tx.

Table 1 • CoreUART Signals

Name* Type Mode Description
CLK Input Sync/Async Main system clock
reset_n Input Sync/Async Active low asynchronous reset
data_in[7:0] Input Sync/Async Transmit write data bus
data_out[7:0] Output Sync/Async Receive read data bus

WEn Input Sync/Async

Active low write enable. This signal indicates that the data presented
on data_in[7:0] bus should be registered by the transmit buffer logic.
This signal should only be active for a single clock cycle per
transaction and should only be active when the TXrdy signal is active

OEn Input Sync/Async
Active low read enable. This signal is used to indicate that the data
on data_out[7:0] has been read and will reset the receive_full bit and
any error conditions (overflow or parity_err)

CSn Input Sync/Async
Active low chip select. The CSn signal qualifies both the WEn and
OEn signals. For embedded applications, this signal should be tied
to a logical ‘0’

bit8 Input Sync/Async

Control bit for data bit width for both receive and transmit functions.
When bit8 is a logical ‘1,’ then the data width is eight bits; otherwise,
the data width is seven bits and data defined by data_in[7] is ignored
and data_out[7] is a don’t care

parity_en Input Sync/Async Control bit to enable parity for both receive and transmit functions.
Parity is enabled when the bit is set to a logical ‘1’

odd_n_even Input Sync/Async
Control bit to define odd or even parity for both receive and transmit
functions. When the parity_en control bit is set, a ‘1’ on this bit
indicates odd parity and ‘0’ indicates even parity

baud_val Input Async 8-bit control bus used to define the baud rate

TXrdy Output Sync/Async Status bit, when set to a logical ‘0,’ indicating that the transmit data
buffer is not available for additional transmit data

receive_full Output Sync/Async

Status bit, when set to a logical ‘1,’ indicating that data is available in
the receive data buffer to be read by the system logic. The data
buffer controller must be notified of the reception by simultaneous
activation of the OEn and CSn signals to prevent erroneous overflow
conditions

parity_err Output Sync/Async
Status bit, when set to a logical ‘1,’ indicating a parity error during a
receive transaction. This bit is synchronously cleared by
simultaneous activation of the OEn and CSn signals

overflow Output Sync/Async
Status bit, when set to a logical ‘1,’ indicating a receive overflow has
occurred. This bit is synchronously cleared by simultaneous
activation of the OEn and csn signals

rx Input Sync/Async Serial receive data
tx Output Sync/Async Serial transmit data
Note: *Active low signals are designated with a trailing lower-case n.
v5.1 3

CoreUART
Device Utilization and Performance
Utilization statistics for targeted devices are listed in Table 2 and Table 3.

CoreUART supports >75 MHz performance for all Actel
FPGAs devices and >100 MHz for Actel’s Axcelerator family
devices.

Customization Options

RTL versions of the core can be customized for
asynchronous and synchronous operations. For netlist
versions, two versions of the core are provided: one for
synchronous and the other for asynchronous operation.

Programmable Options

There are four programmable inputs in the CoreUART:
baud_val (baud rate), bit8 (number of data bits), parity_en
(parity enable), and odd_n_even (odd or even parity).

Number of Data Bits

The input bit8 is used to define the number of valid data bits
in the serial bitstream. The most significant bit is a “don’t
care” for the seven bit case.

Parity

Parity is enabled/disabled with the input parity_en. When
parity is enabled, then the odd_n_even input defines the
type of parity.

Baud Rate

For the asynchronous mode, the baud rate must be
specified. This is done by setting the value of the 8-bit
baud_val bus. This value is a function of the system clock
and the desired baud rate. The value should be set
according to the following equation:

Where:

clk = the frequency of the system clock in hertz

baud = is the desired baud rate in hertz.

The term baudval needs to be rounded to the nearest
integer. For example, a system with a 33 MHz system clock
and a 9600 desired baud rate should have a baud_value of
215 decimal or D7 hex.

Table 2 • CoreUART Utilization in Asynchronous Mode

Family

Cells or Tiles Utilization

Sequential Combinatorial Device Total
Axcelerator 83 100 AX500 2%
SX-A 83 103 A54SX08A 24%
RT54SX-S 83 102 RT54SX32S 6%
ProASICPLUS 79 246 APA150 5%
SX 83 102 A54SX08 24%
ProASIC 79 246 A500K050 6%
42MX 79 86 A42MX09 24%
eX 80 97 eX128 46%
Note: Data in this table achieved using typical synthesis and layout settings

Table 3 • CoreUART Utilization in Synchronous Mode

Family

Cells or Tiles Utilization

Sequential Combinatorial Device Total

Axcelerator 59 65 AX500 2%
SX-A 59 67 A54SX08A 16%
RT54SX-S 59 68 RT54SX32S 4%
ProASICPLUS 57 143 APA150 3%
SX 59 68 A54SX08 17%
ProASIC 57 143 A500K050 4%
42MX 57 53 A42MX09 16%
eX 59 65 eX128 32%
Note: Data in this table achieved using typical synthesis and layout settings

baudval clk
baud 16×()

------------------------------=
4 v5.1

CoreUART
CoreUART Transaction
The UART’s waveforms can be broken down into a few basic
functions: transmit data, receive data, and errors. Figure 3
shows serial transmit signals, and Figure 4 on page 6 shows
serial receive signals. Figure 5 on page 6 and Figure 6 on
page 7 show the parity and overflow error cycles,
respectively. To simplify the waveform description, all of the
waveforms are shown in synchronous mode. Asynchronous

transfers are similar; however, the serial transmission
(START bit, data bits, parity bit, and STOP bit) require
more than one clock cycle to complete. The number of
clocks required is equal to the clock frequency divided by
the baud rate. All waveforms assume that eight bits of data
and parity are enabled.

Notes:
1. A serial transmit is initiated by writing data into the CoreUART. This is accomplished by providing valid data and asserting the WEn and

CSn signals. The TXrdy signal will become inactive for one cycle, while the data is being transferred from the transmit hold register to the
transmit register that begins the serial transfer.

2. The transmission begins with a START bit, followed by data bits zero through six, the optional seventh bit, the optional parity bit, and finally
the STOP bit.

3. Because the UART is double buffered, data can be queued in the transmit hold register (cycle 7). The TXrdy low line indicates that no more
data can be transferred to the UART.

4. Once the previous serial transfer is complete, the data in the transmit hold register is passed to the transmit register and the transfer begins.
The TXrdy line is also asserted indicating that the next data byte may be loaded.

Figure 3 • Serial Transmit

CLK

WEn

CSn

OEn

TXrdy

tx D0 D1 D2 D3 D4 D5 D6 D7 PAR

START
BIT

START
BIT

STOP
BIT

13 14 15 165 6 7 8 9 10 11 121 2 3 4 17 18

data_in DATA DATA
v5.1 5

CoreUART
Notes:
1. The CoreUART continuously monitors the Rx line polling for a START bit. Once the START bit is detected, the CoreUART registers the data

stream. The optional parity is also registered and checked.
2. Then the data is loaded into the receive hold buffer and the receive_full signal is asserted. The receive_full signal will remain asserted until

the data is read externally, indicated by the simultaneous assertion of CSn and OEn.

Figure 4 • Serial Receive

Notes:
1. When a parity error occurs, the parity_err signal is asserted.
2. The error is cleared by the same method that data is read, simultaneous assertion of CSn and OEn.

Figure 5 • Parity Error

13 14 15 165 6 7 8 9 10 11 121 2 3 4CLK

rx

WEn

CSn

data_out

OEn

parity_err

overflow

receive_full

D0 D1 D2 D3 D4 D5 D6 D7 PAR

STOP
BIT

START
BIT

DATA

13 14 15 165 6 7 8 9 10 11 121 2 3 4CLK

rx

WEn

CSn

data_out

OEn

parity_err

overflow

receive_full

D0 D1 D2 D3 D4 D5 D6 D7 PAR

STOP
BIT

START
BIT

DATA
6 v5.1

CoreUART
Ordering Information

Order CoreUART through your local Actel sales
representative. Use the following numbering convention
when ordering: CoreUART-XX, where XX is listed in Table 4.

Notes:
1. When a data overflow error occurs, the overflow signal is asserted.
2. The previous data is held, and the new data is lost.
3. The error is cleared by the same method that data is read, simultaneous assertion of CSn and OEn.

Figure 6 • Overflow Error

13 14 15 165 6 7 8 9 10 11 121 2 3 4CLK

rx

WEn

CSn

DATA_OUT

OEn

parity_err

overflow

receive_full

D0 D1 D2 D3 D4 D5 D6 D7 PAR
STOP
BIT

START
BIT

Previous Data

Table 4 • Ordering Codes

XX Description

EV Evaluation Version

SN Single-use Netlist for use on Actel devices

AN Netlist for unlimited use on Actel devices

AR RTL for unlimited use on Actel devices

UR RTL for unlimited use and not restricted to Actel
devices
v5.1 7

CoreUART
List of Changes
The following table lists critical changes that were made in the current version of the document.

Datasheet Categories

Product Definition

This version of the datasheet is the definition of the product. A prototype may or may not be available. Data presented is subject
to significant changes.

Advanced

This version of the datasheet provides nearly complete information for a prototype IP product. Code is fully operational, but may
not support all features expected in the production release. A prototype core and a preliminary testbench are available.

Production (unmarked)

This version of the datasheet contains complete information on the final core. All components are fully operational and the core
has been thoroughly verified.

Previous version Changes in current version (v5.1) Page

v4.0
Table 1 on page 3 was updated. page 3
Table 2 and Table 3 on page 4 are new. page 4
8 v5.1

Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.

http://www.actel.com

Actel Europe Ltd.
Maxfli Court, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom
Tel: +44 (0)1276 401450
Fax: +44 (0)1276 401490

Actel Corporation
955 East Arques Avenue
Sunnyvale, California 94086
USA
Tel: (408) 739-1010
Fax: (408) 739-1540

Actel Asia-Pacific
EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Tel: +81-(0)3-3445-7671
Fax: +81-(0)3-3445-7668
5172143-3/12.02

	Product Summary
	Intended Use
	Key Features
	Targeted Devices
	Core Deliverables
	Synthesis and Simulation Support
	Macro Verification

	General Description
	Figure 1 . System Block Diagram Depicting CoreUART Usage

	Functional Block Diagram of CoreUART
	Figure 2 . Block Diagram of the CoreUART Functionality

	I/O Signal Descriptions
	Table 1 . CoreUART Signals

	Device Utilization and Performance
	Table 2 . CoreUART Utilization in Asynchronous Mode
	Table 3 . CoreUART Utilization in Synchronous Mode

	Customization Options
	Programmable Options
	Number of Data Bits
	Parity
	Baud Rate

	CoreUART Transaction
	Figure 3 . Serial Transmit
	Figure 4 . Serial Receive
	Figure 5 . Parity Error
	Figure 6 . Overflow Error

	Ordering Information
	Table 4 . Ordering Codes

	List of Changes
	Datasheet Categories
	Product Definition
	Advanced
	Production (unmarked)

