
v2.0
CorePCI Version 5.3
Target, Target+DMA, Master, and Master+Target
Product Summary

Intended Use

• High-Performance PCI Applications

– Target, Master, and Master/Target, which includes
Target+DMA and Target+Master functions

– 33 MHz or 66 MHz Performance

– 32-Bit or 64-Bit PCI Bus Widths

– Memory, I/O, and Configuration Support

• Backend Support for Synchronous DRAM, SRAM, and I/O
Subsystems

Key Features

• Two User-Configurable Base Address Registers for Target
Functions

• Interrupt Capability

• Built-in DMA Controller in all Master Functions

• Flexible Backend Data Flow Control

• Hot-Swap Extended Capabilities Support for Compact PCI

Data Transfer Rates

• Fully Compliant Zero-Wait-State Burst (32-Bit or 64-Bit
Transfer Each Cycle)

• Optional Paced Burst (Wait States Inserted Between
Transfers)

Targeted Devices

• A54SX Family: A54SX16P

• A54SX-A Family: A54SX16A, A54SX32A, A54SX72A

• Axcelerator Family: AX125, AX250, AX500, AX1000, AX2000

• ProASIC 500K Family1: A500K050 A500K130

• ProASICPLUS APA Family1: APA150, APA300, APA450,
APA600, APA750, and APA1000

• RTSX-S Family: RT54SX32S, RT54SX72S

Design Source Provided

• VHDL and Verilog-HDL Design Source

• Actel-Developed Testbench

Synthesis and Simulation Support

• Synthesis: Exemplar, Synopsys DC/FPGA Compiler, and
Synplicity

• Simulation: Vital-Compliant VHDL Simulators and OVI-
Compliant Verilog Simulators

Macro Verification and Compliance

• Actel-Developed Testbench

• Hardware Tested

• I/O Drive Compliant in Targeted Devices

• Compliant with the PCI 2.2 Specification

Version

This datasheet defines the functionality of Version 5.3 of the
CorePCI IP core.

General Description

The CorePCI IP core connects I/O, memory, and processor
subsystem resources to the main system via the PCI bus.
The CorePCI IP core is intended for use with a wide variety
of peripherals where high-performance data transactions
are required. Figure 1 on page 2 depicts typical system
applications using the baseline IP core. While the CorePCI
IP core can handle any transfer rate, most applications will
operate at zero wait states. When required, wait states can
automatically be inserted by a slower peripheral.

The core consists of up to four basic units: the Target
controller, the Master controller, the backend, and the
wrapper. Both the Target and Master controllers remain
constant for a variety of backends. A backend controller
provides the necessary control for the I/O or memory
subsystem and interfaces to the Target controller through a
generic interface. The wrapper combines the Target and
Master blocks with the backend for implementation in a
single Actel device.

The CorePCI IP core can be customized in two different
ways. First, a variety of variables are provided to easily
change parameters such as memory and I/O sizes. The1. 33 MHz, 32-bit only

Section Page

CorePCI Device Requirements 3

CorePCI IP core Block Diagram 6

I/O Signal Descriptions 5

CorePCI Target Function 10

CorePCI Master Function 14

Customization Options 16

Utilization Statistics 18

System Timing 18

 PCI Target Transactions 17

PCI Master Transactions 33

List of Changes 37
August 2002 1
© 2002 Actel Corporation

second method is to develop user-specific backend controllers for non-standard peripherals.

Figure 1 • CorePCI IP Core System Block Diagram

MEM_ADDRESS BUS

MEM_DATA BUS

CorePCI
Target+Master

Controller

Memory
Subsystem

Sync SRAM
Sync DRAM

Optional
Memory or I/O

SubsystemBAR1_ENABLE

Memory Control Signals

Master Bridge Target

FRAMEn

IRDYn

STOPn

DEVSELn

TRDYn

SERRn

IDSEL

AD

PAR

CBE

PERRn

INTAn

CLK

RSTn

PCI Bus

B
ac

ke
nd

C
on

tr
ol

le
r

REQn

GNTn

REQ64n

ACK64n

PAR64

System CPU
Master Control Signals
2

CorePCI Version 5.3 Target, Target+DMA, Master, and Master+Target
CorePCI Device Requirements

Performance requirements and bus size both drive device
selection. Table 1 summarizes the device requirements. A
typical 64-bit PCI system requires at least 200 I/Os. Table 3
on page 4 shows typical pin counts. The actual number of
I/O pins depends on the user backend interface. The table
assumes the complete backend interface is connected to
I/O pins rather than internal logic. Some applications such
as PCI-UART target could only require one backend I/O pin.

Table 1 and Table 2 are summaries of the minimum device
requirements for various PCI size/performance options. In
order to meet the PCI timing requirements for output valid
(6 ns for 66 MHz, 11 ns for 33 MHz) and input setup (3 ns for
66 MHz, 7 ns for 33 MHz) times, the speed grades shown in
Table 1 must be used. The RTSX-S, ProASIC, and
ProASICPLUS families should only be employed for 32-bit/33
MHz PCI applications.

Table 1 • Device Requirements

Target or Master Target+DMA or Target+Master

Function Antifuse Flash Antifuse Flash

32-bit, 33 MHz

A54SX16P

A54SX16A

A54SX32A

A54SX72A

A54SX32S
RT54SX32S–1

AX125
AX250

AX1000
AX2000

A500K050

A500K130
APA075

APA150

APA300

APA450

APA600

APA750

APA1000

A54SX16P

A54SX16A

A54SX32A

A54SX72A

A54SX32S
RT54SX32S–1

AX125
AX250

AX1000
AX2000

A500K050

A500K130

APA150

APA300

APA450

APA600

APA750

APA1000

64-bit, 33 MHz

A54SX32A

A54SX72A
AX125
AX250

AX1000
AX2000

N/A

A54SX32A

A54SX72A
AX125
AX250

AX1000
AX2000

N/A

32-bit, 66 MHz

A54SX16P–3

A54SX16A–3

A54SX32A–3
AX125–1
AX250–1

AX1000–1
AX2000–1

N/A

A54SX16A–3

A54SX32A–3
AX125–1
AX250–1

AX1000–1
AX2000–v

N/A

64-bit, 66 MHz

A54SX32A–3
AX125–1
AX250–1

AX1000–1
AX2000–1

N/A

A54SX32A–3
AX125–1
AX250–1

AX1000–1
AX2000–1

N/A
3

Table 2 • Device Utilization for CorePCI Functions

Target Master Target+DMA Target+Master

Device 32-bit 64-bit 32-bit 64-bit 32-bit 64-bit 32-bit 64-bit

A54SX16A 54% N/A 89% N/A 86% N/A 94% N/A

A54SX16P 54% N/A 89% N/A 86% N/A 94% N/A

A54SX32A 27% 32% 45% 56% 43% 57% 48% 56%

A54SX72A 13% 15% 21% 27% 21% 27% 23% 27%

RT54SX32S 27% 32% 45% 27% 43% 57% 48% 56%

AX125 39% 45% 64% 79% 62% 81% 68% 80%

AX250 19% 22% 31% 38% 30% 39% 32% 38%

AX500 10% 11% 16% 20% 16% 20% 17% 20%

AX1000 4% 5% 7% 9% 7% 9% 8% 9%

AX2000 2% 3% 4% 5% 4% 5% 4% 5%

A500K050 23% N/A 35% N/A 35% N/A 45% N/A

A500K130 10% N/A 15% N/A 15% N/A 19% N/A

APA075 10% N/A 16% N/A 16% N/A 20% N/A

APA150 20% N/A 31% N/A 31% N/A 40% N/A

APA300 15% N/A 23% N/A 23% N/A 30% N/A

APA450 10% N/A 16% N/A 16% N/A 20% N/A

APA600 6% N/A 9% N/A 9% N/A 11% N/A

APA750 4% N/A 6% N/A 6% N/A 7% N/A

APA1000 2% N/A 3% N/A 3% N/A 4% N/A

Notes:
1. Refers to the SX, SX-A, RTSX, and RTSXS families.
2. N/A indicates insufficient I/O resources to support this function.

Table 3 • Core I/O Requirements

Core

I/O Count

PCI

Backend Total

Minimum Standard* Minimum Standard*

32-Bit Target Controller 48 1 74 49 122

64-Bit Target Controller 87 1 113 88 200

32-Bit Master Controller 50 1 83 51 133

64-Bit Master Controller 89 1 122 90 211

32-Bit Target+DMA Controller 50 1 74 51 124

64-Bit Target+DMA Controller 89 1 113 90 202

32-Bit Target+Master Controller 50 1 83 51 133

64-Bit Target+Master Controller 89 1 122 90 211
Note: *Assumes all the backend I/O pins as listed in the data sheet are connected to I/O pins rather than to internal FPGA logic.
4

CorePCI Version 5.3 Target, Target+DMA, Master, and Master+Target
CorePCI IP Core Functional Block
Diagram
The CorePCI IP core consists of six major functional blocks,
shown in Figure 2 on page 6. These blocks are the DMA
state machine, the address phase state machine, the
dataphase state machine, the datapath, parity, and the
configuration block. All of the blocks shown are required to
implement the Target+DMA and Target+Master functions.
For the Target-only core, the DMA state machine is
eliminated. For the Master-only core, the configuration
block is not required.

The DMA, address phase, and dataphase state machines
control the core’s outputs and also the dataflow between
the PCI bus and the backend. The remaining modules
define the datapath logic for the CorePCI IP core.

DMA State Machine

The DMA state machine is responsible for obtaining Master
ownership of the PCI bus and launching a data transfer by
asserting FRAMEn. Once a burst transaction has begun, the
DMA state machine tracks the transfer count and
terminates the burst by de-asserting the FRAMEn signal
and releasing Master ownership of the PCI bus. In addition
to basic Master control, the DMA module also implements
the DMA support registers, PCI Start Address, RAM Start
Address, and DMA Control.

Address Phase State Machine

The address phase state machine is responsible for
monitoring the PCI bus and determining if a PCI
transaction is targeting the CorePCI IP core. When a hit is
detected, the DP_START/DP_START64 signals are
activated, setting off the dataphase machine and backend
logic. The address phase state machine also determines the
cycle type and provides this information on the RD_CYC,
WR_CYC, BAR0_MEM_CYC, BAR1_CYC, and CONFIG_CYC
outputs.

Dataphase State Machine

The dataphase state machine is responsible for controlling
the PCI output signals and coordinating the data transfers
with the backend logic. When operating as a Target, the PCI
outputs are TRDYn, DEVSELn, and STOPn. When operating
as a Master, IRDYn is the primary PCI output. Data
transfers to the backend are coordinated using the signals
RD_BE_RDY, RD_BE_NOW, WR_BE_RDY, and
WR_BE_NOW. The two “BE_RDY” inputs indicate that the
backend is ready to transmit or receive data. The
“BE_NOW” signals are synchronous data strobes and
indicate that a data transfer will occur on the next rising
edge of the clock. The dataphase state machine also drives
the DP_DONE output active at the end of the PCI transfer.

Datapath

The datapath module provides the steering and registers for

the data between the PCI bus and the backend.
Additionally, the datapath contains the address counters
and increments the value after each data transaction.

Parity

The parity block generates and checks parity on the PCI
bus.

Configuration

The configuration block contains the configuration register
file for the Target controller. These registers include the ID,
status, control, and the base address registers.

Data Transactions

The CorePCI IP core is designed to be fully compliant for all
transfer types, including both single DWORD and burst
transactions. Burst transfers can operate with either zero,
one, or more wait states. Normally, the CorePCI IP core will
burst data with zero wait states; however, for slow response
peripherals, the CorePCI IP core can insert wait states
under the control of the backend. During Target operation,
wait states are inserted by driving TRDYn high. During
Master operation, the CorePCI IP core drives IRDYn high to
insert wait states.

I /O Signal Descriptions

The PCI and backend signals for the CorePCI IP core are
defined in Table 4 and Table 5 on page 7. For the purposes
of this data sheet, the following signal type definitions are
used:

• Input: Standard input-only signal.

• Output: Standard active driver that drives continuously.

• T/S Output: Standard active driver that can be tristated.

• Bidirectional (referred to as t/s in the PCI specification):
A combination input and t/s output pin.

• STS: Sustained Tristate (s/t/s in the PCI specification) is a
term used to describe either bidirectional or t/s output
pins. The STS term indicates that the signal should always
be driven to a logic ‘1’ before the pin is tristated.

• Open Drain: Drive to ‘0’ only output. A pull-up is required
to sustain the high-impedance state to a logic ‘1’ and must
be provided by the central resources.
5

Note: For a complete list of signal descriptions, refer to Table 4 on page 6 and Table 5 on page 7.

Figure 2 • CorePCI IP core Block Diagram

Table 4 • CorePCI IP Core Signals

Name1 Type Description

CLK Input 33 MHz or 66 MHz clock input for the PCI IP core

RSTn Input Active LOW asynchronous reset

AD Bidirectional Multiplexed 32-bit or 64-bit address and data bus. Valid address is indicated
by FRAMEn assertion

CBE Bidirectional Bus command and byte enable information. During the address phase, the
lower 4 bits define the bus command. During the dataphase, they define the
byte enables. This bus is 4 bits for 32-bit PCI systems and 8 bits in 64-bit
systems

PAR Bidirectional Parity signal. Parity is even across AD[31:0] and CBE[3:0]

PAR64 Bidirectional Upper parity signal. Parity is even across AD[63:32] and CBE[7:4]. This signal
is not required for 32-bit PCI systems

FRAMEn Bidirectional (STS) Active LOW signal indicating the beginning and duration of an access. While
FRAMEn is asserted, data transfers continue

REQ64n Bidirectional (STS) Active LOW signal with the same timing as FRAMEn indicating that the Master
requests a data transfer over the full 64-bit bus. This signal is not required for
32-bit PCI systems

IRDYn Bidirectional (STS) Active LOW signal indicating that the bus Master is ready to complete the
current dataphase transaction

TRDYn Bidirectional (STS) Active LOW signal indicating that the Target is ready to complete the current
dataphase transaction

1. Active LOW signals are designated with a trailing lower-case n.

Dataphase
State Machine

Address Phase
State Machine

Configuration
Block

Datapath

IRDYn

STOPn

DEVSELn

TRDYn

SERRn

IDSEL

AD

PAR

CBE

PERRn

INTAn

PCI Bus
Back-end
Interface

CLK

RSTn

Parity

FRAMEn

REQn

GNTn

BE_REQ
BE_GNT

DP_START

DP_DONE

MEM_DATA

MEM_ADD[23:0]

RD_CYC
WR_CYC
BAR0_MEM_CYC
BAR1_CYC
CONFIG_CYC

BE_RD_RDY
RD_BE_NOW

BE_WR_RDY
WR_BE_NOW[3:0]

EXT_INTn

DP_START64

RD_BE_NOW64

WR_BE_NOW64[3:0]

ERROR

DMA Controller
and

Register File
6

CorePCI Version 5.3 Target, Target+DMA, Master, and Master+Target
STOPn Bidirectional (STS) Active LOW signal from the Target requesting termination of the current
transaction

IDSEL Input Active HIGH Target select used during configuration read and write
transactions

DEVSELn Bidirectional (STS) Active LOW output from the Target indicating that it is the Target of the current
access

ACK64n Bidirectional (STS) Active LOW output from the Target indicating that it is capable of transferring
data on the full 64-bit PCI bus. This signal is driven in response to the
REQ64n signal and has the same timing as DEVSELn. This signal is not
required in 32-bit PCI systems

REQn Output Active LOW output used to request bus ownership. This signal is asserted by
the PCI Master controller whenever Master/DMA mode is enabled

GNTn Input Active LOW input from the system arbiter indicating that the Master controller
has mastership of the PCI bus

PERRn T/S Output (STS) Active LOW parity error signal

SERRn Open Drain Active LOW system error signal. This signal reports PCI address parity errors

INTAn Open Drain Active LOW interrupt request

Table 5 • backend Interface Signals

Name1,2 Type Description

BAR0_MEM_CYC Output Active high signal indicating a transaction to the memory space defined in the
base address register zero (BAR0) located at 10H in Configuration Header Space

BAR1_CYC Output Active high signal indicating a transaction to the optional memory or I/O space
defined in base address register one (BAR1) located at 14H in Configuration
Header Space

CONFIG_CYC Output Active high signal indicating a transaction to configuration space

RD_CYC Output Active high signal indicating a read transaction from the backend

WR_CYC Output Active high signal indicating a write transaction to the backend

MEM_DATA Bidirectional DWORD aligned 32-bit or 64-bit bidirectional data bus

MEM_ADD[N:0]3 Output DWORD aligned memory address bus where N is defined by the variable
MADDR_WIDTH. Since the PCI address is byte aligned, a 2-bit shift of the
address is performed and PCI address bits 0 and 1 are discarded. For example, a
1 Mbyte memory requires 20 address bits to uniquely address each byte or 18
address bits to uniquely address each DWORD. A PCI address of ‘CCCCC’h
would translate to ‘33333’h on the backend. For writes, individual bytes are
qualified with the 4-bit WR_BE_NOW bus. All reads are assumed to be full
DWORDS

DP_START

DP_START64

Output DP_START is an active high pulse indicating that a PCI transaction to the
backend is beginning. If the transfer is 64-bit, then DP_START64 will be asserted
at the same time as DP_START

DP_DONE Output Active high pulse indicating that a PCI transaction to the backend has finished

Notes:
1. Active LOW signals are designated with a trailing lower-case n.
2. Signals ending in “CYC” become valid as the same cycle DP_START is active and will remain valid throughout the current cycle (until

DP_DONE is asserted).
3. MADDR_WIDTH is defined in Table 21 on page 17.

Table 4 • CorePCI IP Core Signals (Continued)

Name1 Type Description

1. Active LOW signals are designated with a trailing lower-case n.
7

RD_BE_NOW

RD_BE_NOW64

Output Active High Synchronized Read Strobe. When active high, these signals indicate
that the PCI controller will read data on the MEM_DATA bus on the next rising
clock edge. These signals are active whenever both the backend (as indicated by
RD_BE_RDY) and the PCI bus (as indicated by IRDYn) are ready to transmit
data. The RD_BE_NOW indicates a write to the lower 32-bits of data and the
RD_BE_NOW64 indicates a read from the upper 32-bits of data. Function of these
signals are impacted by the PIPE_FULL_CNT bus

RD_BE_RDY Input Active high signal indicating that the backend is ready to send data to the Target
interface. If the ready signal does not become active within the limits defined by
the PCI bus, then a disconnect without data will be initiated

WR_BE_NOW[3:0]

WR_BE_NOW64[3:0]

Output Active high synchronous write strobe. These signals indicate that the PCI
controller is providing valid write data on the MEM_DATA bus. These signals are
active whenever both the backend (as indicated by WR_BE_RDY) and the PCI
bus (as indicated by IRDYn) are ready to transmit data. The WR_BE_NOW
indicates a write from the lower 32-bits of data and the WR_BE_NOW64 indicates
a write from the upper 32-bits of data. For WR_BE_NOW, each bit represents a
byte enable with bit 0 corresponding to the least significant byte (byte 0) on the
MEM_DATA bus. Similarly, for WR_BE_NOW64, each bit represents a byte
enable with bit 0 corresponding to byte 4 on the MEM_DATA bus. Function of
these signals are impacted by the PIPE_FULL_CNT bus

WR_BE_RDY Input Active high signal indicating that the backend is ready to receive data from the
Target interface. If the ready signal does not become active within the time limits
defined by the PCI bus, then a disconnect without data will be initiated

PIPE_FULL_CNT[2:0] Input Normally, the address on MEM_ADDRESS and the data on MEM_DATA are
coincident. In some backends, like synchronous SRAMs, the data lags the
address by one or more cycles. The PIPE_FULL_CNT bus feeds a latency timer
in the PCI controller to help in these cases. When the PIPE_FULL_CNT is
non-zero, the PCI controller will increment the address, the number of counts
defined and will not expect data until the count expires. The RD_BE_NOW and
WR_BE_NOW signals need to be ignored during the time-out. For example, if
PIPE_FULL_CNT is set to “010”, then the *_NOW signals should be ignored
during the first two cycles they are active, while the address is initially incremented

BE_REQ Input A request from the backend to the PCI Controller to take control of the backend.
This signal is active high

BE_GNT Output A grant from the PCI Controller giving control to the backend. When the BE_GNT
signal is active and a transaction to the PCI Target controller occurs, the PCI
controller will respond with a Retry cycle. If a cycle is in progress when the
BE_REQ is asserted, the BE_GNT will not assert until completion of the current
PCI cycle. If the backend must take control during a cycle, then the ready signals
can be de-asserted, causing a PCI time-out and resultant disconnect

ERROR Input Active high signal that will force the PCI controller to terminate the current transfer
with a Target abort cycle. The signal affects the Target function only

BUSY Input Active high signal indicating that the backend controller cannot complete the
current transfer. When BUSY is active at the beginning of a transfer, the Target
controller will perform a retry cycle. If BUSY is activated after some data has been
transferred, the Target controller will perform a disconnect cycle, either with or
without data. The signal affects the Target function only

EXT_INTn Input Active low interrupt from the backend. When PCI interrupts are enabled, this
should cause an INTAn signal to be asserted

Table 5 • backend Interface Signals (Continued)

Name1,2 Type Description

Notes:
1. Active LOW signals are designated with a trailing lower-case n.
2. Signals ending in “CYC” become valid as the same cycle DP_START is active and will remain valid throughout the current cycle (until

DP_DONE is asserted).
3. MADDR_WIDTH is defined in Table 21 on page 17.
8

CorePCI Version 5.3 Target, Target+DMA, Master, and Master+Target
CS_CONTROLn Input Active low chip select to the DMA registers (Master and Target+Master functions)

RD_CONTROLn Input Active low synchronous read enable for the DMA registers (Master and
Target+Master functions only)

WR_CONTROLn Input Active low synchronous write enable for the DMA registers (Master and
Target+Master functions only)

CONTROL_ADD[1:0] Input Two-bit address used to address the DMA registers from the backend (Master and
Target+Master functions only)

Table 5 • backend Interface Signals (Continued)

Name1,2 Type Description

Notes:
1. Active LOW signals are designated with a trailing lower-case n.
2. Signals ending in “CYC” become valid as the same cycle DP_START is active and will remain valid throughout the current cycle (until

DP_DONE is asserted).
3. MADDR_WIDTH is defined in Table 21 on page 17.
9

CorePCI Target Function
The CorePCI Target function acts like a slave on the PCI
bus. The Target controller monitors the bus and checks for
hits to either configuration space or to the address space
defined in its base address registers (BARs). When a hit is
detected, the Target controller notifies the backend and
then acts to control the flow of data between the PCI bus
and the backend.

Supported Target Commands

Table 6 lists the PCI commands supported in the current
CorePCI Target implementation. If required, I/O support,
and thus I/O commands, can be eliminated from the design
by setting the appropriate customization options.

I/O Read (0010) and Write (0011)

The I/O read command is used to read data mapped into I/O
address space. The CorePCI IP core will not check to verify
the consistency of the address and byte enables. This and
any additional error checking is left for implementation by
the user. The I/O write command is used to write data
mapped into I/O address space. In this case, the write is
qualified by the byte enables. The default I/O space size is
256 bytes.

Memory Read (0110) and Write (0111)

The memory read and write commands are used to read data
in memory-mapped address space. The baseline memory
core supports 4 megabytes for the 32-bit core and 8
megabytes for the 64-bit core, which can be located
anywhere in 32-bit address space. The memory size may be
set to any value using the MADDR_WIDTH customization
constant.

Configuration Read (1010) and Write (1011)

The configuration read command is used to read the
configuration space of each device. The configuration write
command is employed to write information into the
configuration space. The device is selected if its IDSEL
signal is asserted and AD[1:0] are ‘00’b. Additional address
bits are defined as follows:

• AD[7:2] contain one of 64 DWORD addresses for the
configuration registers.

• AD[10:8] indicate which device of a multi-function agent is
addressed. The core does not currently support
multi-function devices and these signals should be ‘000’b.

• AD[31:11] are “don’t cares.”

Supported Cycle Types

The CorePCI Target will perform either single DWORD or
burst transactions depending on the request from the
system Master. If the backend is unable to deliver data, the
Target will respond with either a PCI Retry or Disconnect,
either with or without data. If the system Master requests a
transfer that the backend is not able to perform, a Target
abort can be initiated by the backend.

Target Configuration Space

The PCI specification requires a 64-byte configuration space
(header) to define various attributes of the PCI Target, as
shown in Table 7 on page 11. All registers shown in bold are
implemented, including the two base address registers.
None of the remaining registers are included in the baseline
implementation and will return zeroes when read.

In the Target-only function, one additional configuration
register, 48h, is used to define backend interrupt control
and status. For other functions, this information is
contained in the DMA control register.

Read-Only Configuration Registers

The read-only registers listed in Table 7 on page 11 have
default values, but should be modified by the designer. See
the PCI specification for setting these values:

• Vendor ID

• Device ID

• Revision ID

• Class Code

• Subsystem ID

• Subsystem Vendor ID

The header type register is also read-only, but should not be
modified (pre-set to a constant value of ‘00h’). The
Capability Pointer is included when the HOT_SWAP_EN
customization constant is set to ‘1’b. See Table 12 on
page 13 for more information.

Table 6 • Supported PCI Commands

CBE[3:0] Command Type

0010 I/O Read

0011 I/O Write

0110 Memory Read

0111 Memory Write

1010 Configuration Read

1011 Configuration Write
10

CorePCI Version 5.3 Target, Target+DMA, Master, and Master+Target
Read/Write Configuration Registers

The following registers have at least one bit that is both
read and write capable. For a complete description, refer to
the appropriate table.

• Command Register (Table 8)

• Status Register (Table 9 on page 12)

• Base Address Register for Memory (Table 10 on page 13)

• Base Address Register for I/O (Table 11 on page 13)

• Interrupt Register (Table 13 on page 13)

• Interrupt Control/Status Register (Table 14 on page 13)

• Hot-Swap Register (Table 15 on page 14)

Table 7 • PCI Configuration Header

31-24 23-16 15-8 7-0 Address

Device ID Vendor ID 00h

Status Command 04h

Class Code Revision ID 08h

BIST Header Type Latency Timer Cache Line Size 0Ch

Base Address #0 (Memory Location for Baseline Target) 10h

Base Address #1 (Optional Memory or I/O) 14h

Base Address #2 (Optional I/O for DMA Register Mapping) 18h

Base Address #3 1Ch

Base Address #4 20h

Base Address #5 24h

CardBus CIS Pointer 28h

Subsystem ID Subsystem Vendor ID 2Ch

Expansion ROM Base Address 30h

Reserved Capabilities Pointer 34h

Reserved 38h

Max_Lat Min_Gnt Interrupt Pin Interrupt Line 3Ch

Interrupt Control/Status Register 48h

Hot-Swap Register (optional) 80h

Table 8 • Command Register (04h)

Bit Type Description

0 R/W I/O Space

A value of ‘0’ disables the device’s response to I/O space addresses. Set to ‘0’ after
reset

1 R/W Memory Space

A value of ‘0’ disables the device’s response to memory space addresses. Set to ‘0’ after
reset

2 R/W Bus Master

When set to a ‘1,’ this bit enables the macro to behave as a PCI bus Master. For
Target-only implementation, this bit is read-only and is set to ‘0’

3 R/O Special Cycles

No response to special cycles. It is set to ‘0’

4 R/O Memory write and invalidate enable

Memory write and invalidate not supported. It is set to ‘0’

5 R/O VGA Palette Snoop

Assumes non-VGA peripheral. It is set to ‘0’
11

6 R/W Parity Error Response

When ‘0,’ the device ignores parity errors. When ‘1,’ normal parity checking is performed.
Set to ‘0’ after reset

7 R/O Wait Cycle Control

No data-stepping supported. It is set to ‘0’

8 R/W SERRn Enable

When ‘0,’ the SERRn driver is disabled. It is set to ‘0’ after reset

9 R/O Fast Back-to-Back Enable

Set to ‘0.’ Only fast back-to-back transactions to same agent are allowed

15-10 R/O Reserved and set to all ‘0’s

Table 9 • Status Register (06h)

Bit Type Description

3-0 R/O Reserved—set to ‘0000’b

4 R/O Capabilities List

When the HOT_SWAP_EN customization constant is set to a ‘1,’ the bit is set to a ‘1;’
otherwise, it is set to ‘0’

5 R/O 66 MHz Capable

Should be set to ‘1’ to indicate a 66 MHz Target, or ‘0’ to indicate a 33 MHz Target. The
value is depends on the MHZ_66 customization constant

6 R/O UDF Supported

Set to ‘0’—no user definable features

7 R/O Fast Back-to-Back Capable

Set to ‘0’—fast back-to-back to same agent only

8 R/W Data Parity Error Detected

If the Master controller detects a PERRn, this bit is set to a ‘1.’ This bit is read-only in
Target-only implementations and is set to ‘0’

10-9 R/O DEVSELn Timing

Set to ‘10’—slow DEVSELn response

11 R/W Signaled Target Abort

Set to ‘0’ at system reset. This bit is set to a ‘1’ by internal logic whenever a Target abort
cycle is executed

12 R/W Received Target Abort

If the Master controller detects a Target Abort, this bit is set to a ‘1.’ This bit is read-only
in Target-only implementations and is set to ‘0’

13 R/W Received Master Abort

If the Master controller performs a Master Abort, this bit is set to a ‘1.’ This bit is
read-only in Target-only implementations and is set to ‘0’

14 R/W Signaled System Error

Set to ‘0’ at system reset. This bit is set to ‘1’ by internal logic whenever the SERRn
signal is asserted by the Target

15 R/W Detected Parity Error

Set to ‘0’ at system reset. This bit is set to ‘1’ by internal logic whenever a parity error,
address, or data is detected, regardless of the value of bit 6 in the command register

Note: The R/W capability in the status register is restricted to clearing the bit by writing a ‘1’ into the bit location.

Table 8 • Command Register (04h) (Continued)

Bit Type Description
12

CorePCI Version 5.3 Target, Target+DMA, Master, and Master+Target
Table 10 • Memory Base Address Register Bit Definition (Locations 10h or 14h)

Bit Type Description

0 R/O Set to ‘0’ to indicate memory space

2-1 R/O Set to ‘00’ to indicate mapping into any 32-bit address space

3 R/O Set to a ‘1’ Indicating prefetch allowed on reads

23-4 R/O Indicates a 16 MB address space. It is set to all ‘0’s

31-24 R/W Programmable location for 16 MB address space. To determine a hit, these bits must be
compared to PCI address bits 31-24

Note: The description for bit values 31-24 and 23-4 will vary depending on the actual memory size defined in the customization options. See
“Customization Options” on page 16 for more information.

Table 11 • I/O Base Address Register Bit Definitions (Location 14h Only)

Bit Type Description

0 R/O Set to ‘1’ to indicate I/O space

1 R/O Reserved. It is set to ‘0’

7-2 R/O 256-byte I/O space for this peripheral. It is set to all ‘0’s

31-8 R/W Programmable address for this peripheral’s I/O space. To determine a hit, these bits
must be compared to PCI address bits 31-8

Note: The description for bit values 31-8 and 7-2 will vary depending on the actual memory size defined in the customization options. See
“Customization Options” on page 16 for more information.

Table 12 • Capabilities Pointer (34h)

Bit Type Description

7-0 R/O Set to ‘10000000’b when the customization constant, HOT_SWAP_EN, is set to a ‘1’;
otherwise, it is all zeroes

31-8 R/W Reserved. It is set to ‘0’

Note: This register is not required if hot-swap is not enabled. See “Customization Options” on page 16 for more information.

Table 13 • Interrupt Register (3Ch)

Bit Type Description

7-0 R/W Required read/write register. This register has no impact on internal logic

15-8 R/O Set to ‘00000001’b to indicate INTAn

Note: This register is not required if an interrupt is not required. See “Customization Options” on page 16 for more information.

Table 14 • Interrupt Control/Status Register (48h)

Bit Type Description

7-0 R/O Reserved. It is set to all zeroes

8 R/W A ‘1’ in this bit indicates an active external interrupt condition (assertion of EXT_INTn).
The user can clear it by writing a ‘1’ to the bit position. It is set to ‘0’ after reset

9 R/W Writing a ‘1’ to this bit enables support for the external interrupt signal. Writing a ‘0’ to this
bit disables external interrupt support

31-10 R/O Reserved. It is set to ‘0’
13

CorePCI Master Function

The Master function in the CorePCI IP core is designed to
perform the following:

• arbitrate for the PCI bus

• initiate an access by asserting FRAMEn and providing the
address and command

• pass dataflow control to the Target controller

• end the transfer when the DMA count has been exhausted
by de-asserting FRAMEn

Supported Master Commands

The CorePCI Master controller is capable of performing
configuration, I/O, memory, and interrupt acknowledge
cycles. Data transfers can be up to 4k bytes. However,
configuration and I/O commands are typically limited to a
single DWORD.

The Master controller will attempt to complete the transfer
in a single burst unless the maximum burst length bits are
set in the control register. If the addressed Target is unable
to complete the transfer and performs a Retry or
Disconnect, the Master control will restart the transfer and
continue from the last known good transfer. If a Target does
not respond (no DEVSELn asserted) or responds with
Target Abort cycle, the Master controller will abort the

current transaction and report it as an error in the control
register. The supported CorePCI Master commands are
listed in Table 15.

Master Registers

There are three registers used to control the function of the
CorePCI Master. The first register is the 32-bit PCI address
register. The second register is the 32-bit RAM or backend
address register. These two registers provide the
source/destination addressing for all data transfers. A 32-bit
control register defines the type, length, and status of a
Master transfer. These registers are defined in detail in
Table 17 and Tables 18 and 19 on page 15.

Table 15 • Optional Hot-Swap Register (80h)

Bit Type Description

7-0 R/O Reserved. It is set to all zeroes

8 R/O Reserved. It is set to ‘0’

9 R/W ENUM# Signal Mask

10 R/O Reserved. It is set to ‘0’

11 R/W LED ON/OFF. When set to a ‘1,’ this bit is used to drive a blue LED indicating that it is
safe to extract the card

13-12 R/O Reserved. It is set to ‘0’

14 R/W ENUM# Insertion Status

15 R/W ENUM# Insertion Status

23-16 R/O The next item located in the capabilities list. Set to ‘0’ in the baseline core

31-24 R/O Set to ‘06’h to indicate hot-swap capability

Table 16 • Supported CorePCI Master Commands

CBE[3:0] Command Type

0000 Interrupt Acknowledge Cycle

0010 I/O Read

0011 I/O Write

0110 Memory Read

0111 Memory Write

1010 Configuration Read

1011 Configuration Write

Table 17 • PCI Start Address

Bit Type Description

1-0 R/O Set to ‘00’b. PCI transfers must be on a DWORD boundary

31-2 R/W PCI Start Address

This location will increment during the DMA transfer when the DMA_CNT_EN
customization constant is set to a ‘1.’ Otherwise at the end of a transfer, this register
value will hold the initial starting address
14

CorePCI Version 5.3 Target, Target+DMA, Master, and Master+Target
Table 18 • RAM Start Address

Bit Type Description

1-0 R/O Set to ‘00’b. PCI transfers must be on a DWORD boundary

23-2 R/W RAM Start Address

This location will increment during the DMA transfer when the DMA_CNT_EN
customization constant is set to a ‘1.’ Otherwise at the end of a transfer, this register
value will hold the initial starting address

31-24 R/O Set to all zeros

Note: The description for bit values 31-24 and 23-2 will vary depending on the actual memory size defined in the customization options. See
“Customization Options” on page 16 for more information. For this case, MADDR_WIDTH is set to 24.

Table 19 • DMA Control Register

Bit Type Description

0 - 1 R/W DMA Error

00 -- No Error

01 -- Master Abort

10 -- Parity Error

11 -- Target Abort

2 R/O DMA Done

A ‘1’ indicates that the DMA transfer is done. Writing a ‘0’ clears this bit

3 R/W DMA Direction

A ‘1’ indicates a read from PCI and a write to RAM. A ‘0’ indicates a read from RAM and
a write to PCI

4 R/W DMA Request

Writing a ‘1’ will initiate a DMA transfer and the bit will remain set until the DMA transfer
completes or an error occurs (Master abort or Target abort)

5 R/W DMA Enable

This bit must be set to ‘1’ to enable any DMA transfers

7-6 R/W Reserved

8 R/W DMA Interrupt Status

A ‘1’ in this bit indicates an active external interrupt condition (assertion of EXT_INTn)
The user clears it by writing a ‘1’ to this bit position. Set to ‘0’ after reset

9 R/W External Interrupt Enable

Writing a ‘1’ to this bit enables support for the external interrupt signal. Writing a ‘0’ to this
bit disables external interrupt support

10 R/W Memory Transfer Width

Writing a ‘1’ to this bit enables a 64-bit memory transaction. For 32-bit CorePCI IP cores,
this bit is read-only and is set to a ‘0’

15-14 R/O Reserved (Set to ‘00’b)

13-11 R/W Sets the type of PCI cycle performed

000--Memory Cycle

001--Configuration Cycle

010--Interrupt Acknowledge

100--I/O Cycle

Other encodings should not be used
15

Master Register Access

There are three different ways that the Master registers can
be accessed. The address locations for the DMA registers
are listed in Table 20. For Target+DMA functions, the
registers are only accessible from the PCI bus and can be
either I/O mapped or configuration mapped. For the I/O
mapping, the core uses Base Address Register #2 to assign a
256 byte memory space. The registers are then located at
addresses 40h, 44h, and 48h. To map these registers into I/O,
the DMA_IN_IO customization constant must be set to a ‘1.’
When this constant is set to a ‘0,’ the registers are
configuration mapped again at locations 40h, 44h, and 48h.

For Master and Target+Master functions, these registers are
accessed via the backend. A two-bit address bus,
CONTROL_ADD[1:0], is provided along with chip select,
read, and write signals.

Customization Options

The CorePCI IP core has a variety of options for user
customization. A special package defining a list of variables
that allow the user to optimize the core for a particular
application is included with the source design files. All of
the constants are applicable to the Target+DMA function.
For Target+Master functions, the DMA_IN_IO constant is
not required. For Target functions, the DMA_IN_IO and
DMA_CNT_EN constants are not required. For Master
functions, only the BIT64 and the MADDR_WIDTH
constants are used. Table 21 on page 17 lists the variables

and their descriptions.

Configuration Register Constants

To set the read-only registers in the configuration space, a
variety of constants are defined. The constants support the
definitions of the device ID register, vendor ID register,
class code registers, revision ID register, subsystem ID, and
the subsystem vendor ID.

Other Options

In addition to the read-only configuration definitions, the
CorePCI IP core offers a variety of customization options
summarized as follows:

• 32-bit or 64-bit data size (BIT64)

• 33 or 66 MHz operation (MHZ_66)

• BAR0 address size (MADDR_WIDTH)

• Optional BAR1 definitions (BAR1_ENABLE,
BAR1_IO_MEMORY, BAR1_ADDR_WIDTH, and
BAR1_PREFETCH)

• Option to have the DMA registers mapped into I/O space
(DMA_IN_IO) for Target+DMA functions

27-16 R/W DMA Transfer Length

Number of bytes to be transferred. Bits 16 and 17 are set to ‘0’ since DMA transactions
must be on DWORD boundaries. During a DMA transfer, this location will decrement
indicating the number of bytes remaining. To transfer 1024 DWORDs, this location
should be set to all zeros

28 R/O Reserved (Set to ‘0’)

31-29 R/W Maximum Burst Length

When set to ‘000’b, the Master controller will attempt to complete the requested transfer
in a single burst. When set to non-zero, the Master will automatically break up long
bursts and limit burst transfer lengths to 2**(n-1) where n is the decimal value of bits
31-29. Therefore, maximum transfer lengths can be limited to 1, 2, 4, 8, 16, or 32
dataphases. For example, if the maximum burst length is set to ‘101’b (16 transfers),
then a 1024 DWORD transfer count would be broken up into 64 individual PCI accesses

Table 19 • DMA Control Register (Continued)

Bit Type Description

Table 20 • Address Locations for the DMA Registers

Register
Name

Configuration
Address

I/O
Address

Backend
Address

PCI Address 40h 40h 00b

Ram Address 44h 44h 01b

DMA Control
Register

48h 48h 10b
16

CorePCI Version 5.3 Target, Target+DMA, Master, and Master+Target
Table 21 • CorePCI Customization Constants

Constant Type Description

USER_DEVICE_ID1 Binary Device ID constant

USER_VENDOR_ID1 Binary Vendor ID constant

USER_REVISION_ID1 Binary Revision ID constant

USER_BASE_CLASS1 Binary Base Class constant

USER_SUB_CLASS1 Binary Sub Class constant

USER_PROGRAM_IF1 Binary Base Class Interface constant

USER_SUBSYSTEM_ID1 Binary Subsystem ID constant

USER_SUBVENDOR_ID1 Binary Subsystem Vendor ID constant

BIT_64 Binary Defines whether the core should behave as a 32-bit (‘0’) or a 64-bit
(‘1’) PCI controller

MHZ_661 Binary Defines the value of bit 5 in the status register. A ‘1’ indicates the
core is capable of running at 66 MHz

DMA_CNT_EN1 Binary When this constant is set to a ‘1,’ counting is enabled for the PCI
start address, RAM Start Address, and transfer length registers in
the DMA control module. For Master applications with very short
bursts, this constant can be set to a ‘0’

DMA_IN_IO2 Binary When this constant is set to a ‘0,’ the DMA registers are mapped into
configuration space at addresses 40h, 44h, and 48h. If the constant
is set to a ‘1,’ then the DMA registers are mapped into I/O space
defined by base address register 2. The I/O port addresses for the
DMA registers are at 40h, 44h, and 48h

MADDR_WIDTH Integer Defines memory space size for base address register zero.
Allowable range is 8-31 where 8 represents 256 bytes and 24
represents 16 Mbytes of memory space. For Master-only functions,
this constant defines the size of the Master’s backend memory

BAR1_ENABLE3 Binary This constant enables (‘1’) base address register 1 (14h) to be either
a memory or an I/O space

BAR1_IO_MEMORY3 Binary Defines the type of base address register one. A memory is defined
by a ‘1’ and an I/O is defined by a ‘0’

BAR1_ADDR_WIDTH3 Integer Defines memory or I/O space size for base address register one. An
integer setting of N in this field corresponds to 2**N bytes. Allowable
range for memory is 8-31 where 8 represents 256 bytes and 24
represents 16 Mbytes of memory space. Valid range for I/O is 2 to 8

BAR1_PREFETC3 Binary When BAR1 is a memory BAR, this constant defines the value of bit
3 (prefetchable bit) in the base address register

HOT_SWAP_EN3 Binary When HOT_SWAP_EN is set to a ‘1,’ this constant will set bit 4 in
the control register to a ‘1,’ will set the capability pointer to be 80h,
and will implement the hot-swap extended capability register at
configuration address 80h

Notes:
1. Not applicable in Target-only core.
2. Only applicable in Target+DMA core.
3. Not applicable in Master-only core.
17

Util ization Statistics

Utilization statistics for targeted devices are listed in
Table 22. The antifuse column indicates the typical R and C
module counts for the SX, SX-A, RTSX-S, and Axcelerator
families. The Flash column indicates the tile counts for the
ProASIC and ProASICPLUS families. These are typical
numbers and will vary based on the synthesis tools and
constraints used. Each backend requires different amounts
of logic depending on the complexity of the controller. An
SDRAM controller is included as an example.

System Timing

To meet 33 MHz PCI timing specifications, only standard
speed devices from the A54SX, A54SX-A, AX, A500K, and the
APA families are required. To meet 66 MHz PCI timing
requirements, the “–3” speed grade parts from the SX-A
family of “–1” parts from the AX family must be used.

Backend system timing for the CorePCI IP core is defined in
Table 23 and Table 24 and should be utilized in conjunction
with the timing waveforms in the following sections. The
setup and output valid times for backend signals are
measured externally to the device as shown in Figure 3 and
Figure 4 on page 19.

All of the values presented in this section were achieved
using commercially available synthesis tools and
timing-driven place-and-route with fixed pinout for PCI
signals. These values include I/O buffer delays, in most cases
the backend signals will be used internally in the FPGA and
therefore setup and clock-to-out times will be significantly
faster. The actual numbers you achieve will vary, but these
delays should be viewed as expected values.

Table 22 • Utilization Statistics for the CorePCI IP Core

Function Antifuse1 Flash2

32-bit Target Controller 262/528 1218

64-bit Target Controller 350/560 N/A

32-bit Master Controller 480/810 1900

64-bit Master Controller 600/1000 N/A

32-bit Target+DMA Controller 400/850 1904

64-bit Target+DMA Controller 554/1087 N/A

32-bit Target/Master Controller 470/900 2437

64-bit Target/Master Controller 570/1050 N/A

SDRAM Controller 70/130 230

BAR #1 Support 30/70 140

DMA Mapped into I/O3 30/90 120

Notes:
1. The first number is the R-module usage and the second number

is the C-module usage.
2. Total number of tiles required.
3. Only applicable to Target+DMA functions.

Figure 3 • Input Timing for PCI Signals

T_h
Inputs
Valid

CLK

T_su

Table 23 • Generic Input Set-Up Times (ns max)

Name A54SX A54SX–3 A54SXA A54SXA–3 RT54SXS–1 A500K APA AX AX–1

RD_BE_RDY 12 8 11 8 12 19 22 10 8

WR_BE_RDY 14 8 11 8 11 21 19 10 8

BE_REQ 5 3 7 5 6 18 11 7 5

EXT_INTn 5 3 3 2 5 4 6 5 4

BUSY 8 5 8 5 10 14 14 8 6

ERROR 10 6 11 7 11 13 17 9 7

MEM_DATA 6 4 5 3 6 16 18 4 3

Notes:
1. All timing is for worst-case commercial conditions.
2. Expected values from commercially available synthesis tools using standard design practices.
3. MEM_DATA is an external bus.
18

CorePCI Version 5.3 Target, Target+DMA, Master, and Master+Target

PCI Target Transactions

CorePCI IP core supports both 32-bit and 64-bit data
transfers. Configuration and I/O cycles are limited to 32-bit
transfers; however, memory transactions can be either.
Most of the waveforms are shown for 32-bit transfers. To
move from 32-bit to 64-bit, a set of 64-bit control signals are
supplied by both the backend as well as the PCI bus. For
64-bit memory transfers, these signals mirror their 32-bit
counterparts with identical function and timing and are as
follows:

• REQ64n is the same as FRAMEn

• ACK64n is the same as DEVSELn

• PAR64 is the same as PAR

• DP_START64 is the same as DP_START

• RD_BE_NOW64 is the same as RD_BE_NOW

• WR_BE_NOW64 is the same as WR_BE_NOW

In addition to these control signals, the AD and MEM_DATA
buses are 64-bit rather than 32-bit. Also, the CBE bus is
expanded from 4-bits to 8-bits. A complete example of a
64-bit read and write is illustrated in Figure 9 on page 23
and Figure 10 on page 24.

Configuration Cycles

Configuration read and write cycles are used to define and
determine the status of the Target’s internal configuration
registers. Configuration cycles are the only type of
transactions that use the IDSEL signal. Register selection is
defined by the contents of the address (bits 7 down to 2). A
configuration write is shown in Figure 5 and a configuration
read is shown in Figure 6 on page 20. The CorePCI IP core
will also support burst transactions to configuration space if
required.

Table 24 • Generic Output Valid Times (ns max)

Name A54SX A54SX–3 A54SXA A54SXA–3 RT54SXS–1 A500K APA AX AX–2

BAR0_MEM_CYC 7 5 7 5 9 10 10 7 6

BAR1_CYC 7 5 7 5 9 11 10 8 6

READ_CYC 9 6 7 5 11 13 12 9 7

WRITE_CYC 9 6 7 5 12 12 13 9 6

MEM_DATA 14 9 11 9 13 25 23 13 10

MEM_ADD 14 9 11 7 20 16 21 14 11

DP_START 10 7 7 5 12 14 12 8 7

DP_START64 10 7 8 5 12 18 13 8 6

DP_DONE 11 7 8 5 13 22 13 14 12

RD_BE_NOW 8 6 7 5 10 11 12 9 6

RD_BE_NOW64 9 6 8 5 12 17 13 10 8

12 8 9 6 15 18 15 10 8

WR_BE_NOW64 13 8 10 7 14 21 19 9 8

Notes:
1. All timing is for worst-case commercial conditions.
2. Expected values from commercially available synthesis tools using standard design practices.
3. MEM_DATA and MEM_ADD are external buses.

Figure 4 • Output Timing for PCI Signals

CLK

Tristate
Output

T_val

T_off

T_on

Output
Delay
19

Notes:
1. If the Target’s IDSEL is asserted when FRAMEn is asserted and the command bus is ‘1011,’ then a configuration write cycle is indicated.
2. The Target claims the bus by asserting DEVSELn in cycle 4.
3. Data is registered into the device on the rising edge of cycle 5.
4. The single DWORD transfer completes when TRDYn is asserted in cycle 5 and de-asserted in cycle 6.

Figure 5 • Configuration Write Cycle

Notes:
1. If the Target’s IDSEL is asserted when FRAMEn is asserted and the command bus is ‘1010,’ then a configuration read cycle is indicated.
2. The Target claims the bus by asserting DEVSELn in cycle 4.
3. During cycle 7, TRDYn is asserted and valid data is driven onto the PCI bus.
4. The single DWORD transfer completes when TRDYn is de-asserted in cycle 8.

Figure 6 • Configuration Read Cycle

1 2 3 4 5 6 7 8CLK

addr

IDSEL

1011

Paddr

data0

Pdata0

byte enables

FRAMEn

AD

CBE

IRDYn

TRDYn

DEVSELn

PAR

STOPn

CLK

IDSEL

FRAMEn

AD

CBE

IRDYn

TRDYn

DEVSELn

PAR

STOPn

1 2 3 4 5 6 7 8 9 10

data0

Pd0

byte enables1010

addr

Paddr
20

CorePCI Version 5.3 Target, Target+DMA, Master, and Master+Target
Memory/IO Cycles

Zero-Wait-State Burst Transactions

Zero-wait-state bursting enables transfer of a DWORD
(32-bit PCI) or two DWORDs (64-bit PCI) for every clock
cycle. All cycles are initiated with DP_START/DP_START64
indicating a hit to the Target. The backend should then look
at the BAR0_MEM_CYC and BAR1_CYC to determine
which space is being addressed. The RD_CYC and WR_CYC
signals define the direction of the transfer. All of the *_CYC
signals become valid during the DP_START pulse cycle and
will remain in the this state until the next DP_START
occurs. If a DP_START64 is coincident with a DP_START,
then the transaction is expected to be 64-bits wide.

For PCI writes, the backend indicates that it is prepared to
receive data by setting the WR_BE_RDY signal high. Valid
data to the backend is qualified by the WR_BE_NOW bus.
For PCI reads, the backend indicates that it is prepared to

provide read data by setting the RD_BE_RDY signal. The
PCI controller will respond on a following cycle with a
RD_BE_NOW signal, which qualifies the read data. The
data is then transferred to the PCI bus on the following
cycle. In either the read or write case, the core will
automatically increment the address.

In the case of a PCI read, the backend must prefetch the
memory data in order to ensure continuity on long bursts. If
prefetching causes a problem, for example in a FIFO, the
backend logic should shadow the last two data transactions.

32-bit zero-wait-state burst transfers are shown in Figure 7
and Figure 8 on page 22. 64-bit zero-wait-state burst
transfers are shown in Figure 9 on page 23 and Figure 10 on
page 24.

Notes:
1. When FRAMEn is asserted and the command bus is ‘0111,’ then a write to memory space is indicated.
2. The Target will compare the address to the programmed space set in the memory base address register.
3. If an address hit occurs, then the Target asserts DP_START in cycle 3 and claims the PCI bus by asserting DEVSELn in cycle 4.
4. Data transfer to the backend begins on the rising edge of cycle 7 and continues for each subsequent cycle until the PCI bus ends the data

transfer.
5. The address will increment each cycle following an active RD_BE_NOW.
6. The PCI transaction completes when TRDYn is de-asserted in cycle 9 and completes on the backend in cycle 10.
7. For this case, the PIPE_FULL_CNT is set to “000” (See “Backend Latency Control” on page 29 for more information).

Figure 7 • 32-bit Burst Write with Zero Wait States

CLK

addr

0111

Paddr

data0

Pdata0

data1 data2 data3

Pd1 Pd2 Pd3

byte enables

add1 add2 add3

data1 data2 data3data0

add0

1 2 3 4 5 6 7 8 9 10 11 12

FRAMEn

AD

CBE

IRDYn

TRDYn

DEVSELn

PAR

STOPn

MEM_ADDRESS

MEM_DATA

DP_DONE

BARn_CYC

WR_BE_RDY

WR_BE_NOW

WR_CYC

DP_START
21

Notes:
1. When FRAMEn is asserted and the command bus is ‘0110,’ then a read from memory space is indicated.
2. The Target will compare the address to the programmed space set in the memory base address register.
3. If an address hit occurs, then the Target asserts DP_START in cycle 3 and claims the PCI bus by asserting DEVSELn in cycle 4.
4. Data transfer from the backend begins on the rising edge of cycle 7 and continues for each subsequent cycle until the PCI bus ends the data

transfer. The backend prefetches three DWORDs during zero-wait-state bursts.
5. The address will increment each cycle following an active RD_BE_NOW.
6. The PCI transaction completes when TRDYn is de-asserted in cycle 10.
7. For this case, the PIPE_FULL_CNT is set to “000” (See “Backend Latency Control” on page 29 for more information).

Figure 8 • 32-bit Burst Read with Zero Wait States

CLK

addr

0110

Paddr

data1 data2 data3

Pd1 Pd2 Pd3

add2 add3 add4

data2 data3 data4data1

1 2 3 4 5 6 7 8 9 10 11 12

data0

Pd0

add1

data0

byte enables

FRAMEn

AD

CBE

IRDYn

TRDYn

DEVSELn

PAR

STOPn

MEM_ADDRESS

MEM_DATA

DP_DONE

DP_START

RD_BE_RDY

RD_BE_NOW

add0 add5

data5

BARn_CYC

RD_CYC
22

CorePCI Version 5.3 Target, Target+DMA, Master, and Master+Target
Notes:
1. When FRAMEn and REQ64n is asserted and the command bus is ‘0111,’ then a 64-bit write to memory space is indicated.
2. The Target will compare the address to the programmed space set in the memory base address register.
3. If an address hit occurs, then the Target asserts DP_START and DP_START64 in cycle 3 and claims the PCI bus by asserting DEVSELn and

ACK64n in cycle 4.
4. Data transfer to the backend begins on the rising edge of cycle 7 and continues for each subsequent cycle until the PCI bus ends the data

transfer.
5. For 64-bit transfers the MEM_ADDRESS will increment by 2 each cycle.
6. The PCI transaction completes when TRDYn is de-asserted in cycle 9 and completes on the backend in cycle 10.
7. For this case, the PIPE_FULL_CNT is set to “000” (See “Backend Latency Control” on page 29 for more information).
8. See Figure 7 on page 21 for WR_CYC and BARn_CYC timing.

Figure 9 • 64-bit Burst Write with Zero Wait States

CLK

zero

0111

Paddr

data1

Pdata1

data3 data5 data7

Pd3 Pd5 Pd7

byte enables

add2 add4 add6

data3 data5 data7data1

add0

1 2 3 4 5 6 7 8 9 10 11 12

FRAMEn

AD[63:32]

CBE

IRDYn

TRDYn

DEVSELn

PAR

STOPn

MEM_ADDRESS

MEM_DATA[63:32]

DP_DONE

DP_START

WR_BE_RDY

WR_BE_NOW

REQ64n

zero Pdata0 Pd2 Pd4 Pd6PAR64

ACK64n

DP_START64

WR_BE_NOW64

1111

1111

0000

0000

0000

0000

addr data0 data2 data4 data6AD[31:0]

data2 data4 data6data0MEM_DATA[31:0]
23

Notes:
1. When FRAMEn and REQ64n is asserted and the command bus is ‘0110,’ then a 64-bit read from memory space is indicated.
2. The Target will compare the address to the programmed space set in the memory base address register.
3. If an address hit occurs, then the Target asserts DP_START and DP_START64 in cycle 3 and claims the PCI bus by asserting DEVSELn and

ACK64n in cycle 4.
4. Data transfer from the backend begins on the rising edge of cycle 7 and continues for each subsequent cycle until the PCI bus ends the data

transfer. The backend prefetches three DWORDs during zero-wait- state bursts.
5. For 64-bit transfers, the MEM_ADDRESS will increment by 2 each cycle.
6. The PCI transaction completes when TRDYn is de-asserted in cycle 10.
7. For this case, the PIPE_FULL_CNT is set to “000” (See “Backend Latency Control” on page 29 for more information).
8. See “Backend Latency Control” on page 29 for RD_CYC and BARn_CYC timing.

Figure 10 • 64-bit Burst Read with Zero Wait States

CLK

zero

0110

Paddr

data3 data5 data7

Pd2 Pd4 Pd6

add4 add6 add8

data5 data7 data9data3

1 2 3 4 5 6 7 8 9 10 11 12

data1

Pd0

add2

data1

byte enables

FRAMEn

AD[63:32]

CBE

IRDYn

TRDYn

DEVSELn

PAR

STOPn

MEM_ADDRESS

MEM_DATA[63:32]

DP_DONE

DP_START

RD_BE_RDY

RD_BE_NOW

REQ64n

zero Pd3 Pd5 Pd7Pd1PAR64

addr data2 data4 data6data0AD[31:0]

ACK64n

DP_START64

RD_BE_NOW64

data4 data6 data8data2data0MEM_DATA[31:0]

add0 addA

dataB

dataA
24

CorePCI Version 5.3 Target, Target+DMA, Master, and Master+Target
Paced Transactions

Backend throttle transfers provide a handshake mechanism
for supporting slow response devices. The backend
transactions are paced using the RD_BE_RDY and
WR_BE_RDY signals. These signals can be used to pace

either single DWORD or burst transactions. Figure 11 and
Figure 12 on page 26 illustrate this mechanism for a
backend that requires three cycles to respond to a read or
write command from the PCI bus.

Notes:
1. The WR_BE_RDY should be asserted two cycles before the backend is ready to receive data.
2. The WR_BE_RDY signal is asserted on cycle 4 (cycle 7), causing the assertion of TRYDYn on cycle 5 (cycle 8), completing the PCI write cycle.

One cycle later, the data is available on the backend and is qualified by the WR_BE_NOW[3:0] bus.
3. The WR_BE_NOW[3:0] should not be assumed to happen at this time (cycle 6 or cycle 9)because it is also dependent on the state of IRDYn.
4. See Figure 7 on page 21 for WR_CYC and BARn_CYC timing.

Figure 11 • Write Using Backend Throttling

CLK

addr

0111

Paddr

FRAMEn

AD[31:0]

CBE[3:0]

IRDYn

TRDYn

DEVSELn

PAR

STOPn

data0

Pdata0

MEM_ADDRESS[23:2]

MEM_DATA[31:0]

DP_DONE

DP_START

WR_BE_RDY

WR_BE_NOW

byte enables

data1data0

add0

1 2 3 4 5 6 7 8 9 10 11 12

data1

Pd1

add1
25

Notes:
1. The RD_BE_RDY should be asserted one cycle before the backend is ready to transmit data.
2. The RD_BE_RDY signal is asserted on cycle 5 (cycle 8) and will initiate assertion of RD_BE_NOW latching the data into the controller. The

data transfer will complete when TRDYn is asserted on the following cycle 7 (cycle 10).
3. The RD_BE_NOW should not be assumed to happen at this time (cycle 6 or 9) because it is also dependent on the state of IRDYn.
4. See Figure 8 on page 22 for RD_CYC and BARn_CYC timing.

Figure 12 • Read Using Backend Throttling

CLK

addr

0110

Paddr

FRAMEn

AD[31:0]

CBE[3:0]

IRDYn

TRDYn

DEVSELn

PAR

STOPn

MEM_ADDRESS[23:2]

MEM_DATA[31:0]

DP_DONE

DP_START

RD_BE_RDY

RD_BE_NOW

data0

Pd0

data0

1 2 3 4 5 6 7 8 9 10 11 12

add0

data1

add1

data1

Pd0

1413

byte enables

add2
26

CorePCI Version 5.3 Target, Target+DMA, Master, and Master+Target
Paused Transactions

During long bursts, either the backend controller or the PCI
Master may insert wait states to accommodate some
functional requirement. The PCI Master inserts wait states
by de-asserting the IRDYn signal. The wait state is indicated
to the backend by de-assertion of the WR_BE_NOW bus or
the RD_BE_NOW signal.

The backend can insert wait states by de-assertion of the
*_BE_RDY signals. These signals cause the Target

controller to de-assert TRDYn and insert wait states on the
PCI bus. For writes, the backend must be prepared to
accept up to two DWORDs of data prior to data transfer
termination. For reads, the backend must be prepared to
transmit one DWORD of data prior to data transfer
termination. Paused transactions are shown in Figure 13
and Figure 14 on page 28.

Notes:
1. In the example, the flow of data is interrupted from the PCI Master de-assertion of IRDYn in cycle 3. The PCI Master inserts two wait states.

This state of the PCI bus is defined to the backend by de-asserting the WR_BE_NOW[3:0] bus one cycle later.
2. The backend can also interrupt the flow of data by de-asserting the WR_BE_RDY signal. One cycle later, TRDYn is de-asserted, halting the

flow of data on the PCI bus. The backend must accept two DWORDs of data following de-assertion of the WR_BE_RDY signal.

Figure 13 • PCI Write Illustrating both IRDYn and TRDYn De-Assertion

CLK

FRAMEn

AD[31:0]

CBE[3:0]

IRDYn

TRDYn

DEVSELn

PAR

STOPn

MEM_ADDRESS[23:2]

MEM_DATA[31:0]

DP_DONE

DP_START

WR_BE_RDY

WR_BE_NOW

data2 data3

Pd2 Pd3

add1 add2

data1 data2

13 14 15 165 6 7 8 9 10 11 121 2 3 4

Pd1

data4

Pd4

data6 data7 data8 data11

Pd6 Pd7 Pd8 Pd9

add3

data3

add4

data4

data5

Pd5

data9

byte enables

data10 data12

Pd10 Pd11

data5

add5 add6 add7 add8 add9

data6 data7 data8 data9

add10

data10

add11

data11
27

Notes:
1. In the example, the PCI Master interrupts the flow of data by de-asserting the IRDYn sign in cycle 4. One cycle later, RD_BE_NOW signal

becomes inactive indicating that the backend should stop supplying data.
2. The backend can also interrupt the flow of data by de-asserting the RD_BE_RDY signal. The backend should be prepared to provide one

additional DWORD of data to the PCI bus prior to halting the data flow. One cycle after RD_BE_RDY is de-asserted, the RD_BE_NOW signal is
driven inactive, which is then followed by the de-assertion of TRDYn.

Figure 14 • PCI Read Illustrating both IRDYn and TRDYn De-Assertion

CLK

FRAMEn

AD[31:0]

CBE[3:0]

IRDYn

TRDYn

DEVSELn

PAR

STOPn

MEM_ADDRESS[23:2]

MEM_DATA[31:0]

DP_DONE

DP_START

RD_BE_RDY

RD_BE_NOW

data2 data3

Pd2 Pd3

add3 add4

data3 data4

13 14 15 165 6 7 8 9 10 11 121 2 3 4

Pd1

data4 data5

Pd4 Pd5

data6 data7 data8 data9 data10 data11

Pd6 Pd7 Pd8 Pd9 Pd10

add5

data5

add6

data6 data7

data12

Pd11

data8 data9

add7 add8 add9 add10

data10

add11 add12 add13

data11 data12 data13

byte enables
28

CorePCI Version 5.3 Target, Target+DMA, Master, and Master+Target
Backend Latency Control

Some backends require the address to be available at least
one cycle prior to data being valid. This is true for most
synchronous backends. In order to support this need, the
CorePCI IP core provides the PIPE_FULL_CNT control bus
to the backend. This bus can be used to define the relative
delay between address and data. When the
PIPE_FULL_CNT is set to “000”, the data will be expected
to be coincident with the data and the data should be valid
whenever the *NOW lines are asserted.

When PIPE_FULL_CNT is set to a non-zero value, then the
operation of the backend is as follows:

• The backend asserts the *RDY signal.

• The *NOW signal will assert, and the address will begin
incrementing. However, the data is not expected to be
valid until N cycles after the value defined on the
PIPE_FULL_CNT bus.

• Once the initial time-out occurs, valid data must be
available whenever the *NOW signal is asserted.

Figure 15 is an example of this function for a read cycle with
the PIPE_FULL_CNT set to “001”.

Figure 15 • Backend Latency Read Transaction

CLK

addr

0110

Paddr

data1 data2

Pd1 Pd2

add2 add3 add4

data2 data3 data4data1

1 2 3 4 5 6 7 8 9 10 11 12

data0

Pd0

add1

data0

byte enables

FRAMEn

AD

CBE

IRDYn

TRDYn

DEVSELn

PAR

STOPn

MEM_ADDRESS

MEM_DATA

DP_DONE

DP_START

RD_BE_RDY

RD_BE_NOW

add0 add5

data5

PIPE_FULL_CNT 000 001

add6
29

Target Abort

A Target abort occurs when an error condition occurs
(Figure 16). When an error occurs on the backend, this
condition is reported with the ERROR signal. The ERROR

signal will cause a Target abort, which is defined by the
Target simultaneously asserting the STOPn signal and
de-asserting the DEVSELn signal.

Notes:
1. During a PCI cycle, the backend ERROR signal indicates that a problem occurred on the backend such that the transfer cannot be completed.
2. The Target initiates a Target abort by asserting STOPn and de-asserting DEVSELn in the same cycle.
3. The Master will begin cycle termination by de-asserting FRAMEn first, and then IRDYn on a subsequent cycle.
4. The transaction completes when STOPn is de-asserted in cycle 9.
5. The *_BE_RDY signal should be de-asserted whenever the ERROR signal is asserted.

Figure 16 • Target Abort Cycle

CLK

addr

0111

Paddr

FRAMEn

AD[31:0]

CBE[3:0]

IRDYn

TRDYn

DEVSELn

PAR

STOPn

data0

Pdata0

ERROR

1 2 3 4 5 6 7 8 9 10 11 12

data3

Pd3

byte enables

data1 data2

Pd1 Pd2
30

CorePCI Version 5.3 Target, Target+DMA, Master, and Master+Target
Target Retry and Disconnect

When the backend is busy or unable to provide the data
requested, the Target controller will respond with either a
retry cycle or a disconnect cycle. If the backend has
arbitrated for control and the BE_GNT signal is active, then
the controller will respond with a retry cycle (Figure 17).
The Target indicates that it is unable to respond by
asserting STOPn and DEVSELn simultaneously.

During a regular PCI transfer, the RD_BE_RDY and
WR_BE_RDY indicate that data is available to be received
from or transmitted to the backend. If, during a PCI cycle,
the backend becomes unable to read or write data, then the
*_RD_RDY signals are de-asserted. After several cycles, a
PCI time-out will occur and the Target controller will
initiate a Target disconnect without data cycle (Figure 18
on page 32).

Notes:
1. If BE_GNT or BUSY are asserted at the beginning of a cycle, then a retry is initiated.
2. The Target simultaneously asserts the STOPn and DEVSELn signals without asserting the TRDYn signal.
3. The Master will begin cycle termination by de-asserting FRAMEn first and then IRDYn on a subsequent cycle.

Figure 17 • Target Retry

CLK

addr

0110

Paddr

FRAMEn

AD[31:0]

CBE[3:0]

IRDYn

TRDYn

DEVSELn

PAR

STOPn

1 2 3 4 5 6 7 8

byte enables

BE_GNT/BUSY
31

Notes:
1. During a normal PCI transaction, the backend reaches a point where it is unable to deliver data and de-asserts RD_BE_RDY.
2. If the backend cannot deliver new data within 8 cycles, then it should assert the BUSY signal.
3. The Target initiates a disconnect by asserting the STOPn signal.
4. The Master will begin cycle termination by de-asserting FRAMEn first, and then IRDYn on a subsequent cycle.

Figure 18 • Target Disconnect Without Data

CLK

FRAMEn

AD[31:0]

CBE[3:0]

IRDYn

TRDYn

DEVSELn

PAR

STOPn

MEM_ADDRESS[23:2]

MEM_DATA[31:0]

DP_DONE

DP_START

RD_BE_RDY

RD_BE_NOW

add5 add6 add7

data5 data6 data7

data4 data5 data6 data7

Pd4 Pd5 Pd6 Pd7Pd3

1 2 3 4 5 6 7 8 9 10 11 12

BUSY

Pd8

data8

add8

data8

add9
32

CorePCI Version 5.3 Target, Target+DMA, Master, and Master+Target
Backend Arbitration

When the backend needs to take control of the backend bus,
the backend should arbitrate for control using the BE_REQ
and BE_GNT handshake signals (Figure 19).

Interrupt

To initiate an interrupt, the backend needs to assert the
EXT_INTn input (Figure 20). Two cycles later the PCI
INTAn interrupt signal will assert.

PCI Master Transactions

To perform Master transfers for Master only, Target+DMA,
and Target+Master functions, the CorePCI controller has
three configuration registers used to set addresses, transfer
length, control, and check status of the transfer. A basic
sequence of events for executing a DMA or Master transfer
is as follows:

1. Write the location of the desired PCI address into the
PCI Start Address register.

2. Write the location of the backend memory location into
the RAM Start Address register.

3. Set the direction of the transfer using bit 3 of the DMA
Control Register.

4. Define the transfer length using bits 27-16 in the DMA
Control register. The length can be from a single DWORD
up to 1,024 DWORDs. The transfer length value should be
all zeros for 1,024 DWORDs.

5. Initiate the transfer by setting bit 4 and 5 in the DMA
Control register.

6. At completion, bit 1 in the DMA Control register is set to
a ‘1.’

PCI DMA Read

DMA reads begin with arbitration for control of the PCI bus.
The request and grant signals are used to arbitrate Master
access to the bus. Once control is granted to the core, the
core begins by asserting FRAMEn, the address on the AD
bus, and the command ‘0110’ on the CBE bus. A DMA read
fetches data from the PCI bus and writes data to the
backend memory. The core asserts IRDYn and then waits
for the addressed Target to provide the data indicated by
TRDYn assertion. The transfer continues until the DMA
transfer length is reached. The waveforms shown in
Figure 21 on page 34 depict the action of the core when it
operates as a DMA Master in a zero-wait-state read transfer.

For DMA transactions, either zero-wait-state transfers or
paced transfers can be used. During DMA transactions,
these two transfer modes function identically, as they do in
a Target-only transaction.

Notes:
1. Arbitration begins by the backend asserting the BE_REQ signal. The Target Controller will grant control as soon as the PCI controller goes

into an IDLE state.
2. The backend will maintain control as long as the BE_REQ signal remains active.
3. To relinquish control, the backend will de-assert the BE_REQ and BE_GNT will de-assert on the following cycle.

Figure 19 • Backend Arbitration Cycle

Notes:
1. The EXT_INTn signal is sampled on the rising edge of each clock.
2. If the EXT_INTn signal is asserted and sampled in cycle 2, then the PCI INTAn signal will be asserted in cycle 3.

Figure 20 • Interrupt

CLK

BE_REQ

BE_GNT

1 2 3 4CLK

EXT_INTn

INTAn
33

Notes:

1. Once the CorePCI IP core is granted the PCI bus, the core asserts DP_START and begins the process of enabling the bus to drive FRAMEn.
2. The PCI address and command are valid at the same time that FRAMEn is driven low.
3. Once FRAMEn is driven, if the backend is prepared to supply data, then IRDYn is asserted on the following cycle. The core can store up to two

DWORDs of data. If the Target has not responded with a TRDYn when the second DWORD is read, then the core will cease reading as indicated
by the RD_BE_NOW signal de-asserting.

4. The core then waits for the Target to complete the transfer by asserting TRDYn.
5. The transfer continues until either the transfer count is exhausted or the Target disconnects.
6. Cycle termination is initiated by driving FRAMEn high.

Figure 21 • Zero-Wait-State DMA Read (Read from the PCI Bus)

CLK

FRAMEn

AD[31:0]

C_BE[3:0]

IRDYn

TRDYn

DEVSELn

PAR

STOPn

13 14 15 165 6 7 8 9 10 11 121 2 3 4

MEM_ADDRESS[23:2]

MEM_DATA[31:0]

WR_BE_NOW[3:0]

WR_BE_RDY

DP_START

data0 data1 data2 data3

data0 data1 data2 data3

addr1 addr2 addr3 addr4addr0

byte enables

Pd0 Pd1 Pd2 Pd3

addr

Paddr

CMD

DP_DONE

WR_CYC

BARn_CYC
34

CorePCI Version 5.3 Target, Target+DMA, Master, and Master+Target
PCI DMA Write

A DMA write begins by the core requesting control of the
bus. Once the bus is granted (GNTn asserted), the core will
initiate the transfer by asserting FRAMEn. A DMA write
reads information from RAM and writes information onto
the PCI bus. The backend begins fetching data and when
data is available, the datapath pipe fills and data flows onto
the PCI bus. At that point, IRDYn is asserted and the burst
transfer begins. The transfer is terminated once the DMA

transfer length is reached. Figure 22 shows the
zero-wait-state burst write transfer.

To control the Master only core, four backend signals have
been added. The new signals are CS_CONTROLn,
RD_CONTROLn, WR_CONTROLn and CONTROL_ADD(1:0).
Figure 23 on page 36 and Figure 24 on page 36 show how
these signals are used to read and write the DMA control

Notes:

1. Once the CorePCI IP core is granted the PCI bus, the core asserts DP_START and begins the process of enabling the bus to drive FRAMEn.
2. The PCI address and command are valid at the same time that FRAMEn is driven low.
3. Once FRAMEn is driven, if the backend is prepared to supply data, then IRDYn is asserted on the following cycle. The core can store up to two

DWORDs of data. If the Target has not responded with a TRDYn when the second DWORD is read, then the core will cease reading as indicated
by the RD_BE_NOW signal de-asserting.

4. The core then waits for the Target to complete the transfer by asserting TRDYn.
5. The transfer continues until either the transfer count is exhausted or the Target disconnects.
6. Cycle termination is initiated by driving FRAMEn high.

Figure 22 • Zero-Wait-State DMA Master Write (Write to the PCI Bus)

CLK

FRAMEn

AD[31:0]

C_BE[3:0]

IRDYn

TRDYn

DEVSELn

PAR

STOPn

13 14 15 165 6 7 8 9 10 11 121 2 3 4

MEM_ADDRESS[23:2]

MEM_DATA[31:0]

RD_BE_NOW

RD_BE_RDY

DP_START

data3 data4 data5

data1 data2 data3

addr3 addr4 addr5 addr6

byte enables

Pd1 Pd2 Pd3

addr

Paddr

CMD

data0

add0 add1 add2

data0 data1 data2

Pd0

DP_DONE

RD_CYC

BARn_CYC
35

Accessing the DMA Registers from the Backend

A write to the DMA register is accomplished by asserting
CS_CONTROLn, WR_CONTROLn, valid address, and valid
data at the same time. Registers can be updated one at a
time or in bursts by changing the address and data while
keeping CS_CONTROLn and WR_CONTROLn asserted
(Figure 23).

Reads from the DMA are pipelined with two cycles of delay
between valid address and valid data. To enable the output
drivers, both CS_CONTROLn and RD_CONTROLn must be
driven low (Figure 24).

Figure 23 • Backend Write to a DMA Register

Figure 24 • Backend Read from a DMA Register

CLK

WR_CONTROLn

CS_CONTROLn

CONTROL_ADD[1:0] ’00’

MEM_DATA[31:0] PCI

1 2 3 4

CLK

CS_CONTROLn

RD_CONTROLn

CONTROL_ADD[1:0]

MEM_DATA[31:0]

’00’

1 2 3 4 5 6 7 8 9 10

’01’ ’10’

PCI RAM CTL
36

CorePCI Version 5.3 Target, Target+DMA, Master, and Master+Target
List of Changes
The following table lists critical changes that were made in
the current version of the document.

Datasheet Categories

In order to provide the latest information to designers, some
datasheets are published before data has been fully
characterized. Datasheets are marked as “Product Brief,”
“Advanced,” “Production,” or “Web-only.” The definitions of
these categories are as follows:

Product Brief

The product brief is a modified version of an Advanced
datasheet and contains general product information. This
brief summarizes specific device and family information for
non-release products.

Advanced

The datasheet contains initial estimated information based
on simulation, other products, devices, or speed grades.
This information can be used for estimating, but not for
production.

Unmarked (Production)

The datasheet contains information based on characterized
data and is considered to be final.

Web-only

Web-only versions have three digits in their version
designation (example: v2.0.2) A web-only datasheet is
posted to provide customers with the latest information, but
is not printed because additional updates are expected
shortly after posting.

Previous version Changes in current version (v2.0 for 5.3 core) Page
37

Actel and the Actel logo are registered trademarks of Actel Corporation.

http://www.actel.com

Actel Europe Ltd.
Maxfli Court, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom
Tel: +44-(0)1276-401450
Fax: +44-(0)1276-401490

Actel Corporation
955 East Arques Avenue
Sunnyvale, California 94086
USA
Tel: 408-739-1010
Fax: 408-739-1540

Actel Asia-Pacific
EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Tel: +81-(0)3-3445-7671
Fax: +81-(0)3-3445-7668

5172168-0/8.02

All other trademarks are the property of their owners.

	Product Summary
	Intended Use
	Key Features
	Data Transfer Rates
	Targeted Devices
	Design Source Provided
	Synthesis and Simulation Support
	Macro Verification and Compliance
	Version

	General Description
	Figure 1�•� CorePCI IP Core System Block Diagram

	CorePCI Device Requirements
	Table 1�•� Device Requirements
	Table 2�•� Device Utilization for CorePCI Functions
	Table 3�•� Core I/O Requirements

	CorePCI IP Core Functional Block Diagram
	DMA State Machine
	Address Phase State Machine
	Dataphase State Machine
	Datapath
	Parity
	Configuration

	Data Transactions
	I/O Signal Descriptions
	Figure 2�•� CorePCI IP core Block Diagram
	Table 4�•� CorePCI IP Core Signals�
	Table 5�•� backend Interface Signals�

	CorePCI Target Function
	Supported Target Commands�
	Table 6�•� Supported PCI Commands

	Supported Cycle Types
	Target Configuration Space
	Read/Write Configuration Registers
	Table 7�•� PCI Configuration Header
	Table 8�•� Command Register (04h)�
	Table 9�•� �Status Register (06h)�
	Table 10�•� Memory Base Address Register Bit Definition (Locations 10h or 14h)
	Table 11�•� I/O Base Address Register Bit Definitions (Location 14h Only)
	Table 12�•� Capabilities Pointer (34h)
	Table 13�•� Interrupt Register (3Ch)
	Table 14�•� Interrupt Control/Status Register (48h)
	Table 15�•� Optional Hot-Swap Register (80h)

	CorePCI Master Function
	Supported Master Commands
	Table 16�•� Supported CorePCI Master Commands

	Master Registers
	Table 17�•� PCI Start Address
	Table 18�•� RAM Start Address
	Table 19�•� DMA Control Register�

	Master Register Access
	Table 20�•� Address Locations for the DMA Registers

	Customization Options
	Configuration Register Constants
	Other Options
	Table 21�•� CorePCI Customization Constants�

	Utilization Statistics
	Table 22�•� Utilization Statistics for the CorePCI IP Core

	System Timing
	Figure 3�•� Input Timing for PCI Signals
	Table 23�•� Generic Input Set-Up Times (ns max)
	Table 24�•� Generic Output Valid Times (ns max)
	Figure 4�•� Output Timing for PCI Signals

	PCI Target Transactions
	Configuration Cycles
	Figure 5�•� Configuration Write Cycle
	Figure 6�•� Configuration Read Cycle

	Memory/IO Cycles
	Figure 7�•� 32-bit Burst Write with Zero Wait States
	Figure 8�•� 32-bit Burst Read with Zero Wait States
	Figure 9�•� 64-bit Burst Write with Zero Wait States
	Figure 10�•� 64-bit Burst Read with Zero Wait States

	Paced Transactions
	Figure 11�•� Write Using Backend Throttling
	Figure 12�•� Read Using Backend Throttling

	Paused Transactions
	Figure 13�•� PCI Write Illustrating both IRDYn and TRDYn De-Assertion
	Figure 14�•� PCI Read Illustrating both IRDYn and TRDYn De-Assertion

	Backend Latency Control
	Figure 15�•� Backend Latency Read Transaction

	Target Abort
	Figure 16�•� Target Abort Cycle

	Target Retry and Disconnect
	Figure 17�•� Target Retry
	Figure 18�•� Target Disconnect Without Data

	Backend Arbitration
	Interrupt
	Figure 19�•� Backend Arbitration Cycle
	Figure 20�•� Interrupt

	PCI Master Transactions
	PCI DMA Read
	Figure 21�•� Zero-Wait-State DMA Read (Read from the PCI Bus)

	PCI DMA Write
	Figure 22�•� Zero-Wait-State DMA Master Write (Write to the PCI Bus)

	Accessing the DMA Registers from the Backend
	Figure 23�•� Backend Write to a DMA Register
	Figure 24�•� Backend Read from a DMA Register

	List of Changes
	Datasheet Categories
	Product Brief
	Advanced
	Unmarked (Production)
	Web-only

