
GPE: A New Representation for VLSI Floorplan Problem

Chang-Tzu Lin, De-Sheng Chen, Yi-Wen Wang

Department of Information Engineering and Computer Science

Feng Chia University, Taichung, Taiwan

Abstract
In this paper, we propose a new representation of VLSI

floorplan and building block problem. The representation is
the generalization of Polish expression [1]. By proposing a
new relational operator, the representation can efficiently
reuse some area that cannot be utilized if only having vertical
and horizontal operators defined in Polish expression, and is
able to present non-slicing structural floorplan. The
experimental results show that the representation achieves
promising area utilization in commonly used MCNC
benchmark circuits.

1 Introduction

The problem of VLSI floorplan and placement is to
determinate whether a given set of modules can be packed in
a small chip. There are varieties of representing approaches
in these problems but naturally classified into two categories.

One is slicing structure first proposed by Otten in [3] and a
binary tree is used. In [1], Wong et al. propose a mechanism
that traverses the binary tree in postorder, called Polish
expression, to present a slicing floorplan. The slicing
representation has some advantages such as smaller encoding
cost and solution space bringing faster runtime for packing.
Furthermore, it is flexible to deal with hard, pre-placed, soft,
and rectilinear modules. However, in real designs optimal
solutions might not be in the solution space of the slicing
structure.

The other structure of representation is nonslicing,
including Sequence Pair (SP) [4], O-tree [7], B*-tree [2],
Corner Block List (CBL) [8], Transitive Closure Graph
(TCG) [9]. However, these nonslicing representations need
more evaluating runtime for packing than Polish expression.

Our main contribution is that we propose a new and easy
representation for VLSI floorplan and building block
problem. The representation effectively inherits the useful
property of Polish expression [1] and is able to present
non-slicing floorplan. We tested the approach using MCNC
benchmarks and the experiments give promising results.

The paper is organized as follows. Preliminaries are given
in section 2. Section 3 describes the new representation.
Algorithmic operators are discussed in section 4. Section 5
gives the experimental results on MCNC benchmarks.

2 Preliminaries

Given a set of modules B = {B1, B2,…, Bn}. Each module Bi
is rectangular and has fixed width and height. The
coordinates of modules are the absolute coordinates of the
lower left corner of the module. The objective of floorplan
area optimization problem is to minimize the area of B
subject to the constraints that no pair of modules overlaps

each other. The problem has been proved to be NP-complete
[6].
2.1 Polish Expression2.1 Polish Expression2.1 Polish Expression2.1 Polish Expression

This representation can only present slicing structure of a
floorplan. Each packing is encoded by a sequence, including
module name and two relational operators. As illustrated in
Fig. 1, every leaf corresponds to a basic module and is
marked by a module name. Every internal node of the tree is
labeled by a + or a *, corresponding to a vertical or a
horizontal cut respectively. We can obtain a Polish
expression [1] of length 2n - 1 with n modules in the slicing
floorplan by traversing the slicing tree.

3 GPE (Generalized Polish Expression)
 In this section, we introduce an encoding scheme GPE (the
abbreviation for Generalized Polish Expression). It is the
generalization of Polish expression. GPE can efficiently
reuse some area that cannot be utilized anymore if only
having vertical and horizontal operators defined in Polish
expression, and is able to present non-slicing structural
floorplan.

GPE uses a sequence of modules to reflect a physically
non-slicing floorplan by proposing a new relational operator.
Except the geometrically relational operators + and * in
Polish expression, the third kind of operator, @ (corner
relation in a packing) is introduced. As illustrated in Fig. 2(a),
if there are only geometrically vertical and horizontal
operators, the utilization of dead area is not achievable. The
corner operator @, however, will arrange a module or a
super-module in a corner formed by the other modules. In Fig.
2(b), the corner operator will arrange E in the corner, i.e. the
dead area constructed by A and B, where A, B and E can be a
module or a super-module. Through corner operator, the dead
area can be effectively reused by the other modules that have
not been arranged yet. Furthermore, with the proposed corner
operator, the new encoding scheme GPE can express the
structure of wheel, as illustrated in Fig. 2(c).

We now show how to derive a GPE from a floorplan, and
derive a floorplan from a GPE, in the following subsections.
3.1 Packing to GPE
 Prior to discuss the detail, we shall present some
terminologies introduced in [1], so as to easily explain the
transformation from packing to GPE.
 A binary sequence b1b2…bm is a balloting sequence if and
only if, for any k, 1 ≤ k ≤ m, the number of 0’s in b1b2…bk is
less than the number of the 1’s in b1b2…bk. Let σ be a
function σ : {1,2,…,n,+,*,@} → {0, 1} defined by σ(i) = 1,
where 1 ≤ i ≤ n, and σ(+) = σ(*) = σ(@) = 0.

A sequence Ψ = {λ1,λ2,…,λ2n-1} of elements from
{1,2,…,n,+,*,@} is a GPE of length 2n-1 if and only if,

Proceedings of the 2002 IEEE International Conference on Computer Design: VLSI in Computers and Processors (ICCD’02)
1063-6404/02 $17.00 © 2002 IEEE

 (1) Each i appears exactly once in the sequence, where 1 ≤
i ≤ 2n-1.
 (2) σ(λ1) σ(λ2)…σ(λ2n-1) is a balloting sequence.

As illustrated in Fig. 3, the non-slicing floorplan can be
represented by a GPE or a GPE-tree, where +, * and @
corresponding to the geometrically vertical, horizontal and
corner relation of previous sub-packing. GPE-tree can be
constructed by scanning GPE from left to right, and each
module and relational operator corresponds to leaf and
internal node, respectively. We can also obtain the GPE from
the GPE-tree by traversing the tree in postorder. Note that the
exact position of corner operator is decided by the corner
constraint, denoted as (R, T), where R is the right boundary
left to the packed module and T is the top boundary below the
packed module. A corner operator may have several corner
constraints, and we will choose the one based on the
following consideration, (i) choose the first one that the
associated module can be completely filled into the corner, or
(ii) choose the first one that putting the module into the
corner will not enlarge the floorplan.
3.2 GPE to Packing
 According to the postorder of GPE-tree, we can obtain the
GPE {λ1,λ2,…,+,…,*,…,@,…λ2n-1}, where +, * and @
corresponding to the geometrically vertical, horizontal and
corner relation of previous sub-packing.
 To clearly explain the packing procedure, we show an
example of GPE {a b + c * d @(b,c) f + e * g h i + * @(f,e)} in
Fig. 3. The GPE will be scanned character by character from
left to right. Once a relational operator is scanned, the
operator will combine the previous scanned modules or
super-modules according to its property. For instance, in
terms of {a b +}, we will arrange module b on top of module
a when operator + is scanned. For {a b + c *}, module c is
packed right of the super-module {a b +}. When a corner
operator, @(b,c), is scanned, we will put module d on the
corner formed by module b and module c. The rest may be
deduced analogically.

4 Algorithmic Operators

We apply the following three kinds of operations to perturb
a GPE-tree:
z Complement: Complement a chain of nonzero length.
z Rotate: Rotate a module.

z Swap: Swap two leaves (modules), swap one leaf and
one sub-tree (sub-floorplan), or swap two sub-trees.

Complement
A sequence d1d2···dq of q operators is called a chain of

length q. Note that di ≠ di+1 in a GPE for all 1 ≤ i ≤ k – 1. The
complement operation is to change the chain of originally
relational operators of nonzero length to the others. Fig. 4(b)
shows the resulting GPE, GPE-tree, and floorplan after
complementing the chain {* + *} to {+ * @(b, c)} shown in
Fig 4(a). Notice that the corner constraint of the corner
operator is decided at packing stage.
Rotate

The operation is to exchange the width and height of i-th
leaf (module) in a GPE-tree. The new generated GPE-tree of
the first l terms (l = i - 1) will be the same with the old one.
Fig. 4(c) shows the resulting GPE, GPE-tree and floorplan
after rotating the module f shown in Fig 4(b).
Swap

The operation is to randomly swap two leaves (modules) ni
and nj, swap one leaf ni and one sub-tree (sub-floorplan) sj, or
swap two sub-trees si and sj in a GPE-tree. Fig. 4(d) shows
the resulting GPE, GPE-tree and floorplan after swapping the
module d and the subtree {g h i + *} shown in Fig 4(c).

5 Experimental Results

Based on the simulated annealing method [5], we
implemented the GPE representation in the C++
programming language on a PC with Intel PIII 800MHz CPU
and 128 MB memory. We compared GPE with FAST-SP [6],
enhanced O-tree [7], B*-tree [2], CBL [8], and TCG [9],
which were recently published, based on the five MCNC
benchmark circuits.

a b
+

d
c

@

@

g
h

+
i

*

f
+ e

*GPE-tree

GPE = {a b + c * d @(b,c) f + e * g h i + * @(f,e)}

a

b

c

d

g i
h

e

f

*

Fig. 3. A GPE-tree and an GPE correspond to its packing.

Polish expression =
{a f + c i * + h + e g + * b d + *}

+: cut horizontally
*: cut vertically

slicing tree

a f
+

c i
*

h
+

e g
+

*
b d

+
*

a
b

c d
g

i

h

ef +

Fig. 1. Slicing tree representation and its corresponding
Polish expression of a slicing floorplan.

(a) B A * (b) B A * E @

B

A

C

D
B

A

E
B

A

E

Dead-area

(c) B A * E @ C + D @

Fig. 2. Relational operators (a) dead area is no longer utilized by
only horizontal or vertical operators (b) corner operator, @, can
effectively reuse the dead area, and (c) a floorplan of wheel
structure, where A, B, C, D and E can be a module or a
super-module. Notice that the part of shadow is dead area.

Proceedings of the 2002 IEEE International Conference on Computer Design: VLSI in Computers and Processors (ICCD’02)
1063-6404/02 $17.00 © 2002 IEEE

The area and runtime comparisons among FAST-SP (on Ultra1),

O-tree (on a 200 MHz SUN Sparc Ultra-I workstation with 512 MB
memory), enhanced O-tree (on Sun Sparc Ultra-60), B*-tree (on a
200 MHz SUN Sparc Ultra-I workstation with 256 MB memory),
CBL (on Sun Sparc 20), and TCG (on a 433 MHz SUN Sparc
Ultra-60 workstation with 1 GB memory) are listed in Table II. The
area of a placement is measured by that of the minimum bounding
box enclosing the placement. As shown in the Table II, GPE
achieves promising area utilization among previous works. The
final circuit layouts of ami33, ami49 are shown in Fig. 5(a) and Fig.
5(b), respectively.

References
[1] D. F. Wong, and C. L. Liu, “A New Algorithm for Floorplan Design,”
Proc. DAC, pp.101–107, 1986.
[2] Yun-Chih Chang; Yao-Wen Chang; Guang-Ming Wu; Shu-Wei Wu,
“B*-trees: A New Representation for Non-slicing Floorplans,” Proc. DAC,
pp. 458 –463, 2000.
[3] R.H.J.M. Otten, “Automatic floorplan design,” Proc. DAC, pp. 261–267,
1982.
[4] Nakaya S., Koide T. and Wakabayashi S., “An adaptive genetic algorithm
for VLSI floorplanning based on sequence-pair,” Proc. ISCAS, pp. 65 -68,
2000.
[5] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, pp.671–680, 1983.
[6] X. Tang and D. F. Wong, ”FAST-SP: A Fast Algorithm for Block
Placement based on Sequence Pair,” Proc. ASP-DAC, pp. 521-526, 2001.
[7] Y. Pang, C.K. Cheng, and T. Yoshimura, “An enhanced perturbing
algorithm for floorplan design using the O-tree representation,” Proc. ISPD,
pp. 168-173, 2000.
[8] X. Hong, G. Huang, Y. Cai, J. Gu, S. Dong, C.-K. Cheng, and J. Gu,
“Corner block list: an effective and efficient topological representation of
non-slicing floorplan,” Proc. ICCAD, pp. 8-12, 2000.
[9] Jai-Ming Lin and Yao-Wen Chang, “TCG: A Transitive Closure
Graph-Based Representation for Non-Slicing Floorplans,” Proc. DAC, pp.
764-769, 2001.

TABLE I
COMPARISONS FOR RUNTIME AND AREA REQUIREMENTS AMONG POLISH EXPRESSION, O-TREE, B*-TREE, CBL, SP, AND TCG BASED ON

GENETIC AND SIMULATED ANNEALING ALGORITHMS. (NA: NOT AVAILABLE)

 enhanced
O-tree [7] B*-tree [2] CBL [8] FAST-SP [6] TCG [9] GPE

 Area
(mm2)

Time
(sec)

Area
(mm2)

Time
(sec)

Area
(mm2)

Time
(sec)

Area
(mm2)

Time
(sec)

Area
(mm2)

Time
(sec)

Area
(mm2)

Time
(sec)

apte 46.92 11 46.92 7 NA NA 46.92 1 46.92 1 45.90 1

xerox 20.21 38 19.83 25 20.96 30 19.8 14 19.83 18 20.14 2

hp 9.16 19 8.95 55 NA NA 8.947 6 8.95 20 9.12 2

ami33 1.24 118 1.27 3417 1.20 36 1.205 20 1.20 306 1.18 81

ami49 37.73 406 36.80 4752 38.58 65 36.5 31 36.77 434 36.45 247

a b + c * g h i * + * f + e * d @(f,e)

a

b

c

d

g

ih
e

f

a b
+

d

c
*

@

* f
+ e

*

g
h

*
i

+

(a) initial configuration of GPE

a b + c * g h i + * @(b,c) f + e * d @(f,e)

a

b

c

d

g i
h e

f

a b
+

d

c
*

@

@ f
+ e

*

g
h

+
i

*

(b) complement chain {* + *}

a b + c * g h i + * @(b,c) f + e * d @(f,e)

a

b

c

d

g i
h e

f

a b
+

d

c
*

@

@ f
+ e

*

g
h

+
i

*

(c) rotate module f

a b + c * d @(b,c) f + e * g h i + * @(f,e)

a

b

c

d

g i
h

e

f

a b
+

d
c

*

@

@ f
+ e

*
g

h
+

i

*

(d) swap subtree {g h i + *} and module d

Fig. 4. Three types of perturbation. (a) The initial GPE, GPE-tree
and floorplan, (b) The resulting GPE, GPE-tree and floorplan after
complementing the chain {* + *}, (c) The resulting GPE, GPE-tree
and floorplan after rotating the module f, (d) The resulting GPE,
GPE-tree and floorplan after swapping the module d and the subtree
{g h i + *}.

 (a) (b)

Fig. 5. Final circuit layouts of (a) ami33, (b) ami49.

Proceedings of the 2002 IEEE International Conference on Computer Design: VLSI in Computers and Processors (ICCD’02)
1063-6404/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

